摘要
一般情况下,求解大规模约束问题的有效算法是共轭梯度法,βk的选取不同构成不同的共轭梯度法。提出了求解无约束优化问题的一种新的共轭梯度法,修正了βk,并在Wolfe线搜索下证明了它的全局收敛性。
In the ordinary circumstances,conjugate gradient method was an effective algorithm for solving large-scale restraint problems,different selections constructed different conjugate gradient methods.A new conjugate gradient method is proposed for solving unconstrained optimization problems to update and prove the method with Wolfe line search convergece globally.
出处
《长江大学学报(自科版)(上旬)》
CAS
2007年第4期12-13,共2页
JOURNAL OF YANGTZE UNIVERSITY (NATURAL SCIENCE EDITION) SCI & ENG
关键词
无约束优化问题
共轭梯度法
WOLFE线搜索
全局收敛性
unconstrained optimization problem
conjugate gradient method
Wolfe line search
global convergence