期刊文献+

基于电子回旋共振-等离子体增强金属有机物化学气相沉积技术生长GaMnN稀磁半导体的研究 被引量:1

Analysis of diluted magnetic semiconductor GaMnN grown by electron cyclotron resonance-plasma enhanced metal organic chemical vapor deposition
原文传递
导出
摘要 利用电子回旋共振-等离子体增强金属有机物化学气相沉积(ECR-PEMOCVD)方法,采用二茂锰(Cp2Mn)作为Mn源,高纯氮气作为氮源,三乙基镓(TEGa)作为Ga源,在蓝宝石(α-Al2O3)(0001)衬底上外延生长GaMnN稀磁半导体薄膜.反射高能电子衍射(RHEED)、X射线衍射(XRD)、原子力显微镜(AFM)表征了GaMnN薄膜的晶体结构和表面形貌.GaMnN薄膜均表现出良好的(0002)择优取向,表明制备的薄膜倾向于c轴方向生长,薄膜保持很好的纤锌矿结构.表面形貌是由许多亚微米量级的晶粒按一致的取向规则堆砌而成的.超导量子干涉仪(SQUID)用来表征薄膜的磁性.SQUID分析表明,薄膜呈铁磁性,铁磁性仅可能来源于三元相GaMnN,薄膜的居里温度高于350K.而且,高Mn的含量可以提高薄膜的居里温度. Diluted magnetic semiconductor film GaMnN was grown on sapphire (α-A12O3)substrate using biscyclopentyldienyl manganese (Cp2 Mn), N2 and TEGa by electron cyclotron resonance-plasma enhanced metal organic chemical vapor deposition (ECR-PEMOCVD) . The crystal structure and surface topography of the GaMnN films were characterized by RHEED, XRD and AFM. GaMnN films exhibit good (0002) preferred orientation, showing the films are inclined to c-axis growth and retain good wurtzite structure. The surface topography of GaMnN film is composed of many submicron grains piled in the consistent orientation. The magnetism of films is characterized by SQUID. SQUID shows that the film is ferromagnetic, which comes probably only from the ternary phase GaMnN and the Curie temperature of GaMnN film is higher than 350 K. Moreover, higher Mn concentration can enhance the Curie temperature of the film.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2008年第1期508-513,共6页 Acta Physica Sinica
基金 国家自然科学基金(批准号:60476008)资助的课题~~
关键词 GaMnN薄膜 稀磁半导体 铁磁性 居里温度 GaMnN film, diluted magnetic semiconductor, ferromagnetism, Cruie temperature
  • 相关文献

参考文献3

二级参考文献13

  • 1徐茵,顾彪,丛吉远,季天仁.用于半导体加工的腔耦合-磁多极型ECR源的研究[J].核聚变与等离子体物理,1996,16(2):50-55. 被引量:10
  • 2Tanaka Y, Hasebe Y.Inushima T et al 2000 J Cryst Growth. 209 410
  • 3Pavis C S, Novokov S V, Cheng T S et al 2001 J. Cryst Growth.226 203.
  • 4Xu Y,Gu B,Qin F W,Coag J Y 1998 Semiconductor Technology 23 37 (in Chinese).
  • 5Liu H F, Chen H, Li Z Q et al 2000 Acta Phys. Sin. 49 1132(in Chinese).
  • 6Zhang H X, Lu H M, Ye Z Z et al 1994 Acta Phys. Sin. 48 1314(in Chinese).
  • 7Liang C G and Zhang J 1999 .J Semiconductor 20 89(in Chinese).
  • 8Strite S and Morkoq H 1992 J. Vac. Sci. Technol. B 10 1237.
  • 9Huang J P, Wang L W, Zhu X R et al 1999 Piezoelectricity and Acousoopticity 21 387(in Chinese).
  • 10Zhao Y L, Zhong G Z, Fan X W et al 1999 J.Luminescence. 20 165(in Chinese).

共引文献25

同被引文献18

  • 1丁万昱,徐军,李艳琴,朴勇,高鹏,邓新绿,董闯.微波ECR等离子体增强磁控溅射制备SiNx薄膜及其性能分析[J].物理学报,2006,55(3):1363-1368. 被引量:12
  • 2吴振宇,杨银堂,汪家友.微波电子回旋共振等离子体化学气相淀积法制备非晶氟化碳薄膜的研究[J].物理学报,2006,55(5):2572-2577. 被引量:3
  • 3Girard A,Hitz D,Melin G,Serebrennikov K 2004 Rev.Sci.Instrum.75 1381.
  • 4Lu Y F,Sun J,Yu D,Shi L Q,Dong Z B,Wu J D 2006 J.Vac.Sci.Technol.A 24 413.
  • 5Yadav V K,Sathyanarayana K,Purohit D,Bora D 2007 Rev.Sci.Instrum.78 023503.
  • 6Decker J,Ram A K 2006 Phys.Plasmas 13 112503.
  • 7Tartari U,Grosso G,Granucci G,Lubyako L V,Shalash ov A G,Suvorov E V,Orsitto F P,Simonetto A,Nowak S,Volpe F,Bruschi A,Gand ini F,Muzzini V,Garavaglia S,Grossetti G 2006 Nucl.Fusion 46 928.
  • 8Nakagawa T,Higurashi Y,Kidera M,Aihara T,Kase M,Goto A,Yano Y 2006 Rev.Sci.Instrum.77 03A304.
  • 9Shindo M,Ueda Y,Kawakami S,Ishii N,Kawai Y 2000 Vacuum 59 708.
  • 10Holber W M,Forster J 1990 J.Vac.Sci.Technol.A 8 3720.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部