期刊文献+

一种新型SFCM聚类算法

A new algorithm for Semi-Fuzzy c-Means clustering
下载PDF
导出
摘要 为提高故障诊断模式分类的收敛速度及诊断准确度,采用阈值化类内距离的方法,研究了一种新型SFCM聚类算法,证明了算法模糊加权幂指数m在区间(0,1)取值时能实现半模糊聚类,讨论了阈值η对算法的影响并给出了聚类程序算法,实验结果表明此算法较FCM算法在收敛速度和聚类精度方面有较好表现,在故障模式分类中有一定的使用价值。 In order to improve the convergence speed and precision in pattern classification of fault diagnosis, a Semi-Fuzzy c Means(SFCM) algorithm was proposed based on revised Euclidean distance. We proved that Se- mi-Fuzzy clustering can be realized when the fuzzy weighted exponent sign m is defined in (0,1). We also dis- cussed the influence of threshold parameter η on clustering algorithm, and presented the program steps. The experimental results showed that the proposed algorithm is better than Fuzzy c-Means (FCM) clustering algorithm in convergence speed and clustering precision, and thus can be used in fault pattern classification.
出处 《电光与控制》 北大核心 2008年第1期84-87,共4页 Electronics Optics & Control
关键词 故障诊断 SFCM 聚类算法 阈值化 航空武器 故障分类 fault diagnosis Semi-Fuzzy c-Means(SFCM) clustering algorithm threshold airborne weapon fault classification
  • 相关文献

参考文献4

  • 1BEZDEK J C.Pattern recongnition with fuzzy objective function algorithms[M].New York:Plenum Press,1981.
  • 2Dubes R C,JAIN A K.Algorithms for clustering data[M].Englewood Cliffs,NJ:Prentice-Hall,1988.
  • 3KAMEL M S,SELIM S Z.A threshold fuzzy c-means algorithm for semi-fuzzy clustering[J].Pattern Recognition,1991,24(9):825-833.
  • 4SELIM S Z,ISMAIL M A.Soft clustering of multidimensional data:a semi-fuzzy approach[J].Pattern Recognition,1984,17(5):559-568.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部