摘要
为提高故障诊断模式分类的收敛速度及诊断准确度,采用阈值化类内距离的方法,研究了一种新型SFCM聚类算法,证明了算法模糊加权幂指数m在区间(0,1)取值时能实现半模糊聚类,讨论了阈值η对算法的影响并给出了聚类程序算法,实验结果表明此算法较FCM算法在收敛速度和聚类精度方面有较好表现,在故障模式分类中有一定的使用价值。
In order to improve the convergence speed and precision in pattern classification of fault diagnosis, a Semi-Fuzzy c Means(SFCM) algorithm was proposed based on revised Euclidean distance. We proved that Se- mi-Fuzzy clustering can be realized when the fuzzy weighted exponent sign m is defined in (0,1). We also dis- cussed the influence of threshold parameter η on clustering algorithm, and presented the program steps. The experimental results showed that the proposed algorithm is better than Fuzzy c-Means (FCM) clustering algorithm in convergence speed and clustering precision, and thus can be used in fault pattern classification.
出处
《电光与控制》
北大核心
2008年第1期84-87,共4页
Electronics Optics & Control
关键词
故障诊断
SFCM
聚类算法
阈值化
航空武器
故障分类
fault diagnosis
Semi-Fuzzy c-Means(SFCM)
clustering algorithm
threshold
airborne weapon
fault classification