摘要
文中讨论了一类根式不等式的有理等价问题.证明了这类根式不等式可等价转化为一组有理不等式.建立了一个算法RFD,并用Maple编程实现.对一个给定的这类根式不等式,RFD可自动快速地产生一组有理等价不等式.将RFD算法和差分代换方法相结合,给出了一大类具有相当难度的几何不等式的机器证明.此前该课题仅有的工作是杨路关于二次根式的结果.
A theory is developed to transform a class of inequalities involving radicals to a set of rational inequalities. And this theory is implemented by a Maple program named "RFD" which can efficiently produce a set of rational inequalities that equal to the original inequalities involving radicals. Combining RFD with SDS, the program can automatically prove an extensive class of geometric inequalities involving radicals.
出处
《计算机学报》
EI
CSCD
北大核心
2008年第1期24-31,共8页
Chinese Journal of Computers
基金
国家"九七三"重点基础研究发展规划项目基金(2004CB318003)
中国科学院知识创新工程重要方向项目(KJCX-YW-S02)资助
关键词
根式不等式
有理化
不等式机器证明
差分代换
inequalities involving radicals
rationalization
automated proving
SDS