期刊文献+

一类根式不等式的有理化算法与机器证明 被引量:12

Rationalizing Algorithm and Automated Proving for a Class of Inequalities Involving Radicals
下载PDF
导出
摘要 文中讨论了一类根式不等式的有理等价问题.证明了这类根式不等式可等价转化为一组有理不等式.建立了一个算法RFD,并用Maple编程实现.对一个给定的这类根式不等式,RFD可自动快速地产生一组有理等价不等式.将RFD算法和差分代换方法相结合,给出了一大类具有相当难度的几何不等式的机器证明.此前该课题仅有的工作是杨路关于二次根式的结果. A theory is developed to transform a class of inequalities involving radicals to a set of rational inequalities. And this theory is implemented by a Maple program named "RFD" which can efficiently produce a set of rational inequalities that equal to the original inequalities involving radicals. Combining RFD with SDS, the program can automatically prove an extensive class of geometric inequalities involving radicals.
作者 徐嘉 姚勇
出处 《计算机学报》 EI CSCD 北大核心 2008年第1期24-31,共8页 Chinese Journal of Computers
基金 国家"九七三"重点基础研究发展规划项目基金(2004CB318003) 中国科学院知识创新工程重要方向项目(KJCX-YW-S02)资助
关键词 根式不等式 有理化 不等式机器证明 差分代换 inequalities involving radicals rationalization automated proving SDS
  • 相关文献

参考文献11

  • 1Buchberger B, Collins G E, Kutzler B. Algebraic method for geometric reasoning. Annual Review of Computer Science, 1988, 3:85-119
  • 2Wu W-T. Basic principles of mechanical theorem proving in elementary geometries. Journal of Systems Science and Mathematical Science, 1984, 4(3): 207-235
  • 3Yang L, Zhang J. A Practical program of automated proving for a class of geometric inequalities//Richter-Gebert J, Wand D eds. Proceedings of the Automated Deduction in Geometry. LNAI 2061. Berlin: Springer-Verlag, 2001:41-57
  • 4杨路,夏时洪.一类构造性几何不等式的机器证明[J].计算机学报,2003,26(7):769-778. 被引量:37
  • 5Cox D, Little J, O'Shea D, Using algebraic geometry. New York: Springer-Verlag, 1998: 71-76
  • 6Yang L, Solving harder problems with lesser mathematics// Proceedings of the 10th Asian Technology Conference in Mathematics. ATCM Inc, 2005: 37-46
  • 7Bottema O et al, Geometric Inequalities. Groningen, Netherland: Wolters-Noordhoff Publishing, 1969
  • 8刘保乾.BOTTEMA,我们看见了什么,拉萨:西藏人民出版社,2003
  • 9Collins G E, Hong H . Partial cylindrical algebraic decomposition for quantifier elimination. Journal of Symbolic Computation, 1991, 12(3): 299-328
  • 10Yang L, Xia S H. An inequality-proving program applied to global optimization//Yang W C et al eds. Proceedings of the Asian Technology conference in Mathematics. Blacksburg: ATCM, Inc., 2000:41-57

二级参考文献1

共引文献36

同被引文献134

引证文献12

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部