期刊文献+

一种应用于推荐系统的Web挖掘算法:AIR算法 被引量:1

Web-mining algorithm for recommendation system:AIR
下载PDF
导出
摘要 针对互联网站点信息海量和结构复杂的趋势,推荐系统被用来协助互联网用户方便快捷地找到所需信息,培养用户忠诚度。Web挖掘技术在处理海量数据和稀疏数据上有着先天的优势,所以Web挖掘技术在推荐系统中得到了越来越广泛的研究和应用。基于Web挖掘的推荐系统所使用的主要技术有聚类、关联规则、序列模式等等。然而,这些技术往往不能在推荐的准确性和覆盖范围方面做到两全。综合这几种技术,取其优点去其缺点,提出了一种新的算法(AIR算法)。通过基于实际使用数据的详尽的实验评估,可以证明该算法能够在准确性和覆盖范围方面明显提高推荐系统的整体性能。 Internet users often spend much time finding useful pages.Recommendation system does such a job that it can help user locate information and increase the users' loyalty.In respect that web mining is good at dealing with massive data and sparse data,web mining is widely used in recommendation system.Most important technologies in web mining include clustering, association rules,sequence pattern.Howerver,these technologies have a limitation that it is difficult to strike the balance of preci- sion and coverage.In this paper,we integrate these technologies and raise a new algoritbm(AIR).Our experiment data,performed on real usage data,indicate that AIR can achieve dramatic improvements in terms of recommendation effectiveness.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第1期168-170,201,共4页 Computer Engineering and Applications
关键词 WEB挖掘 推荐系统 关联规则 序列模式 聚类算法 AIR算法 Web mining recommendation system association rules sequence pattern clustering AIR
  • 相关文献

参考文献12

  • 1Lee T B.A roadmap to the Semantic Web[EB/OL].(1998-09).http://www.w3.org/DesignIssues/Semantic.html.
  • 2Gaul W,Thieme L S.Recommender systems based on navigation path features[C]//WEBKDD'01,San Fransisco,CA,Aug 2001.
  • 3Heer J,Chi E H.Mining the structure of user activity using cluster stability[C]//Proceedings of the Workshop on Web Analytics,SIAM Conference on Data Mining(ArlingtonVA),April 2002.
  • 4Heer J,Chi E H.Separating the swarm:categorization methods for user access sessions on the Web[C]//Proc of ACM CHI 2002 Conference on Human Factors in Computing Systems.ACM Press,2002:243-250.
  • 5Adomavicius G,Tuzhilin A.Recommendation technologies:survey of current methods and possible extensions,2001.
  • 6Mobasher B,Cooley R,Srivastava J.Creating adaptive web sites through usage-based clustering of URLs[C]//IEEE Knowledge and Data Engineering Workshop(KDEX'99),1999.
  • 7Mobasher B,Dai H,Luo T,et al.Integrating web usage and content mining for more effective personalization[C]//Proceedings of the International Conference on Ecommerce and Web Technologies (ECWeb2000),Sept 2000.
  • 8Mobasher B,Dai H,Luo T,et al.Improving the effectiveness of collaborative filtering on anonymous web usage data[C]//Proceedings of the IJCAI 2001 Workshop on Intelligent Techniques for Web Personalization(ITWP01),August 2001.
  • 9Mobasher B,Dai H,Luo T,et al.Effective personalization based on association rule discovery from Web usage data[C]//Proceedings of the 3rd ACM Workshop on Web Information and Data Management(WIDM01),Atlanta,Georgia,November 2001.
  • 10Kosala R,Blockeel H.Web Mining Research:a survey[C]//ACM SIGKDD,2000.

共引文献40

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部