期刊文献+

基于微粒群算法的图像自适应增强算法的研究 被引量:2

Research on image enhancement based on particle swarm optimization
下载PDF
导出
摘要 提出了一种基于微粒群算法(PSO)的图像增强方法,把图像增强看作最优化问题。使用此方法可以自动地找出降质图像归一化的非完全β函数的最优参数值,对原始图像降质类型进行正确的推理。不论原始图像是哪种降质类型,使用提出的算法都能得到较好的增强。并且在评价算法的性能时,使用了一种新的目标函数。实例仿真证实了PSO在图像增强上的有效性和优越性。 In this study,a Particle Swarm Optimization (PSO) approach to image enhancement is proposed,in which image enhancement is formulated as an optimization problem.Using the approach,the optimization parameters in the normalized incomplete Beta function of degraded images can be automatically found out.Then accurate illation of the type of original degraded images can be got.In spite of which type of the original images,better result of enhanced image can be obtained.And a new objective function is used during evaluating the performance of algorithms.The efficiency and superiority of PSO algorithms to image enhancement can be showed by the simulation results.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第2期50-53,共4页 Computer Engineering and Applications
基金 国家自然科学基金( the National Natural Science Foundation of China under Grant No.60474030) 。
关键词 图像增强 微粒群优化算法 非完全β函数 目标函数 image enhancement PSO incomplete Beta function objective function
  • 相关文献

参考文献9

  • 1Gonzalez Rafael C.Digital image processing[M].2nd ed.Ruan Qiuqi.Beijing:Publishing House of Electronics Industry,2003:59-132.
  • 2Lee J D.Digital image enhancement and noise filter by use of local statistics[J].IEEE Trans PAMI,1997,19(9):863-872.
  • 3Kennedy J,Eberhart R C.Particle swarm optimization[C]//Proceedings of IEEE Neural Networks(Ⅳ),1995:1942-1948.
  • 4Shi Y,Eberhart R C.A modified particle swarm optimizer[C]//Proceedings of the IEEE International Conference on Evolutionary Computation.Piscataway N J:IEEE Press,1998.
  • 5Cheng H D,Shi X J.A simple and effective histogram equalization approach to image enhancement[J].Digital Signal Processing,2004,14:158-170.
  • 6Kundu M K,Pal S K.Automatic selection of object enhancement operator with quantitative justification based on fuzzy set theoretic measures[J].Pattern Recognition,1990,11:811-829.
  • 7Tubbs J D.A note on parametric image enhancement[J].Pattern Recognition,1997,30(6):617-621.
  • 8Shyu M S,Leou J J.A genetic algorithm approach to color image enhancement[J].Pattern Recognition,1998,31(7):871-880.
  • 9Azriel R,Avinash C K.Digital picture processing[M].New York:Academic Press,1982:154-167.

同被引文献20

引证文献2

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部