期刊文献+

基于P2P协作的垃圾邮件发送行为识别技术研究 被引量:1

Research on identifying technology of spam sending behavior based on P2P
下载PDF
导出
摘要 在分析目前垃圾邮件过滤技术的基础上,并根据垃圾邮件大量发送行为特征,提出了一种基于P2P协作的垃圾邮件发送行为识别技术。该技术将各邮件服务器组成一个反垃圾邮件(Anti-Spam)P2P网络,每个邮件服务器储存可疑邮件信息并将这些信息共享在Anti-Spam P2P网络上,然后根据可疑邮件信息在Anti-Spam P2P网络上进行协作识别垃圾邮件。实验结果表明,该技术是针对垃圾邮件的群发特征而不依赖于邮件内容、语言类型或格式分析,在MTA阶段就能过滤大量垃圾邮件,提高了处理速度和准确率并节省大量的系统资源,具有良好的过滤性能。 On the basis of analyzing these days spare filtering techniques,this paper proposes an identifying technology of spare sending behavior based on P2P (ITSSB) according to the sending behavior of spare.An Anti-Spare P2P network is structured between email servers to save and share information about suspicion email.Spam is identified collaboratively according to information about suspicion email in the Anti-Spare P2P network.The experiment result shows the ITSSB is just for the character of sending mails together without depending on the email content,the language type and the format analysis.The ITSSB can be also applied to filtering a large number of spare in the process of MTA communication,speeding up the process,improving the accuracy and saving a lot of systematical resources,and having well filtering capability.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第2期144-148,共5页 Computer Engineering and Applications
基金 国家自然科学基金( the National Natural Science Foundation of China under Grant No.60572137) 湖南省科技计划项目( No.2006GK3084) 。
关键词 P2P JXTA 垃圾邮件 群发行为 peer-to-peer network JXTA spam bulk sending behavior
  • 相关文献

参考文献11

  • 1Ernesto D,Sabrina D,Stefano P,et al.P2P-based collaborative spam detection and Filtering[C]//Proceedings of the Fourth International Conference on Peer-to-Peer Computing(P2P'04).Washington:IEEE Computer Society,2004:176-183.
  • 2Stolfo S J,Hershkop S.A behavior-based approach to securing e-mail systems[C]//Proceedings of Mathematical Methods,Models and Architectures for Computer Networks Security.[S.l.]:Springer Verlag,2003.
  • 3Martin S,Sewani A,Nelson B,et al.Analyzing behaviorial features for email classification[EB/OL].[2005].http://www.eecs.berkeley.edu/-steve0/papers/ceas.pdf.
  • 4Desikan P,Srivastava J.Analyzing network traffic to detect e-mail spamming machines[EB/OL].[2004].http://www.site.uottawa.ca/-zhizhan/ppdmworkshop2004/paper8.pdf.
  • 5Bhattacharyya M,Hershkop S,Eskin E.MET:an experimental system for malicious email tracking[C]//Proceedings of the 2002 Workshop on New Security Paradigms.Session:Intrusion Detection and Response,2002:3-10.
  • 6Metzger J,Schillo M,Fischer K.A multiagent-based peer-to-peer network in Java for distributed spam filtering[C]//LNAI 2691:Proceedings of the 3rd International/Central and Eastern European Conference on Multiagent Systems (CEEMAS'03),Springer,2003:616-625.
  • 7Zhou F,Zhuang L,Zhao B Y,et al.Approximate object location and spam filtering on'peer-to-peer systems[C]//Proc Middleware,Rio de Janeiro,Brazil,2003:1-20.
  • 8Fang Wei -dong,Dong Shou-bin.Addressing interest diversity in P2P based collaborative spam filtering[C]//GCC Workshops,2006:163-169.
  • 9中国互联网协会.2006年第四次中国反垃圾邮件状况调查圆满结束:邮箱用户数量增加,垃圾邮件比例下降[EB/OL].[2002-04-17].http://www.isc.org.cn/20020417/ca403986.htm.
  • 10SpamAssassin.The apache spamassassin project[EB/OL].[2007-04-24].http://spamassassin.apache.org/downloads.cgi?update=200704002400.

二级参考文献32

  • 1李渝勤,孙丽华.基于规则的自动分类在文本分类中的应用[J].中文信息学报,2004,18(4):9-14. 被引量:20
  • 2M. DeSouza, J. Fitzgerald, C. Kempand G. Truong, A Decision Tree based Spam Filtering Agent[EB] . from http:∥www. cs. mu. oz. au/481/2001- projects/gntr/index. html, 2001.
  • 3N. Littlestone, Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm[J]. Machine Learning, 2(4) :285- 318, 1988[J].
  • 4R. Krishnamurthy and C. Orasan, A corpus-based investigation of junk emails[A]. In: Proceedings of Language Resources and Evaluation Conference (LREC 2002)[C]. Las Palmas de Gran Canaria, Spain, pp. 1773- 1780,May 2002.
  • 5M. Sahami, S. Dumais, D. Heckerman and E. Horvitz, A Bayesian approach to filtering junk e-mail[A]. In:Proc. of AAAI Workshop on Learning for Text Categorization[C]. pp. 55-62, 1998.
  • 6W. Cohen, Fast effective rule induction[A]. In: Machine Learning Proceedings of the Twelfth International Conference[C]. Lake Taho, California, Mongan Kanfmann, pp. 115-123, 1995.
  • 7W. Cohen, Learning rules that classify email[A]. In: Proceedings of the AAAI spring symposium of Machine Learning in Information Access, Palo Alto[C]. California, pp. 18 - 25. 1996.
  • 8X. Carreras and L. Marquez, Boosting Trees for Anti-Spam Email Filtering[A]. In: Proceedings of Euro Conference Recent Advances in NLP (RANLP-2001)[C]. pp. 58-64, Sep. 2001.
  • 9T. Nicholas, Using AdaBoost and Decision Stumps to Identify Spam E-mail[ EB]. Stanford University Course Project (Spring 2002/2003) Report, from http: ∥nlp. stanford. edu/courses/cs224n/2003/fp/.
  • 10Y. Diao, H. LuandD. Wu, A Comparative Study of Classification Based PersonalE-mail Filtering[A]. In: Proceedings of PAKDD-2000[C], pp.408-419, Apr. 2000.

共引文献128

同被引文献11

  • 1王鑫,陈光英,段海新,李学农.基于用户反馈和增量学习的垃圾邮件识别方法[J].清华大学学报(自然科学版),2006,46(1):70-73. 被引量:2
  • 2刘一田,吴军华.一种P2P结构的协作式反垃圾邮件模型[J].南京工业大学学报(自然科学版),2007,29(1):44-48. 被引量:1
  • 3邱明明,吴国新.基于P2P的协作式垃圾邮件检测系统[J].计算机工程与设计,2007,28(11):2559-2562. 被引量:5
  • 4Metzger J, Schillo M, Fischer K. A multiagent-based peer-to -peer network in Java for distributed spam filtering[ C ]//Proceedings of the 3rd International Central and Eastern European Conference on Muhiagent Systems. Prague, Czech Republic: Springer, 2003: 616-625.
  • 5Zbou Feng, Zhuang Li, Zhao B Y, et al. Approximate object location and spare filtering on peer-to-peer systems [ C ]//Proceedings of ACM/IFIP/USEN1X International Middleware Conference. Rio de Janeiro, Brazil:[ s. n. ] ,2003:1- 20.
  • 6Fang Weidong, Dang Shoubin. Addressing interest diversity in P2P based collaborative spare filtering[ C]//GCC Workshops.[s. l. ]: [s. n. ] ,2006:163-169.
  • 7Types of Spam Filters [ EB/OL]. 2007-03-05. http://www. whichspamfilter, com/TypesOfFilters, him.
  • 8Annika. User involvement in automatic filtering: an experimental study [ J]. User Modeling and User-Adapted Interaction, 2004, 14: 201-237.
  • 9Kim J,Choi K,Jung G. Spare mail filtering through dynamically updating BRL statistics [ C ]//Proceedings of the ISATED International Conference: web technologies, Applications and Services. Calgary, Alberta, Canada : [ s. n. ] ,2005:41-47.
  • 10杨静丽,夏跃伟.基于主题划分的P2P垃圾邮件过滤模型[J].武汉理工大学学报,2008,30(8):43-45. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部