期刊文献+

一种适应大型数据库的多支持度关联规则算法 被引量:1

New algorithm for mining association rules with multiple supports in large databases
下载PDF
导出
摘要 关联规则挖掘一直是数据挖掘中的重要组成部分。提出一个新算法DPCFP-growth算法。DPCFP-growth算法是基于MSApirori算法,采用了CFP-growth分而治之的思想,并弥补了CFP-growth算法的不足。CFP-growth算法运行时要把整个数据库中的数据压缩到一个MIS-tree中然后进行频繁模式挖掘。在大型数据库中CFP-growth算法会建立一个深度很深宽度很宽的CFP-tree,以至于内存往往不能满足其要求,被迫使用大量的辅存,致使算法的运行效率急剧下降。DPCFP-growth算法根据CFP-tree的特征,有效地把大数据库分为若干个内存可以满足其要求的子数据库,然后在每个子数据库中进行局部频繁模式挖掘,最终汇总这些频繁模式生成全局频繁模式。实验表明该算法是正确的,并且在大型数据挖掘中,比CFP-growth算法有一定的优越性。 Mining association rules from a large database have been described as an important problem of database mining.In this paper,a novel algorithm DPCFP-growth is proposes.The algorithm based upon the MSApirori takes advantage of the advantage and offsets the disadvantage of CFP-growth that CFP-growth always needs so much EMS memory in large database that the computer can't meet it.In DPCFP-growth algorithm,according to characters of MIS-tree,firstly partition a large database into some smaller databases which EMS memory of computer can meet them.Secondly the algorithm takes in the thinking of the CFPgrowth to mining local frequent patterns.Finally ,the algorithm parses the set of all the local frequent patterns to get final frequent patterns.The experiments show that the DPCFP-growth algorithm has more superiority to previous algorithm.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第2期182-185,共4页 Computer Engineering and Applications
基金 北京市教委科技发展重点项目(No.KZ200710028014)。
关键词 数据挖掘 数据库划分 多支持度 频繁模式 data mining database partition multiple minimum supports frequent pattern
  • 相关文献

参考文献12

  • 1Han J,Kamber M.Data mining:concepts and techniques[M].Beijing:High Education Press,2001.
  • 2Tseng Ming-Cheng,Lin Wen-Yang.An efficient mining of generalized association rules with non-uniform minimum support[J].Data & Knowledge Engineering,2007,62:41-64.
  • 3Lee Y C,Hong T P,Lin Wen-yang.Mining association rules with multiple minimum supports using maximum constraints[J].International Journal of Approximate Reasoning,2005,40:44-54.
  • 4Liu Bing,Hsu W,Ma Yi-ming.Mining association rules with multiple minimum supports[C]//ACM SIGKDD International Conference on Knowledge Discovery& Data Mining(KDD-99),San Diego,CA,USA,August 1999:15-18.
  • 5Hu Ya-han,Chen Yen-liang.Mining association rules with multiple minimum supports a new mining algorithm and a support tuning mechanism[J].Decision Support Systems,2006,42:1-24.
  • 6郑泉,王建东.基于FP-树挖掘大数据库的方法及算法PCM[J].计算机工程与应用,2004,40(7):182-184. 被引量:6
  • 7Savasere A,Omiecinski E,Navathe S.An efficient algorithm for mining association rules in large databases[C]//Proceedings of the 21st VLDB Conference Zurich,Swizerland,1995:432-444.
  • 8Agrawal R,Srikant R.Fast algorithms for mining association rules[C]//Proceedings of the 20th Very Large DataBases Conference(VLDB'94),Santiago de Chile,Chile,1994:487-499.
  • 9Stonebraker M,Agrawal R,Dayal U,et al.Database research at a crossroads:the vienna update[C]//Proceedings of the 19th International Conference on Very Large Data Bases,Dublin Ireland,August 1993:688-192.
  • 10Agrawal R,Imielinski T,Swami A.Mining association rules between sets of items in large databases[C]//Proceedings of the ACM SIGMOD Conference on Management of data,May 1993:207 -216.

二级参考文献4

  • 1[1]Jiawei Han,Micheline Kamber. Data Mining:Concepts and Techniques.CopyrightC2001 by Morgan Kaufmann Publishers,Inc
  • 2[2]R Agrawal ,R Srikant. Fast algorithms for mining association rules[C].In:Proc 1994 Int Conf Very Large Data Bases(VLDB'94),Santiago,Chile, 1994-09
  • 3[3]J Han,J Pei,Y Yin. Mining frequent patterns without candidate generation[C].In:Pro 2000 ACM-SIGMOD Int Conf Management of Data(SIGMOD'00), Dallas ,TX ,2000-05:1~12
  • 4[4]R Agarwal,C Aggarwal,V V V Prasad. A tree projection algorithm for generation of frequent itemsets. In J Parallel and Distribute Computing, 2000

共引文献5

同被引文献10

引证文献1

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部