期刊文献+

基于相邻模式段组合的生物序列模式挖掘算法 被引量:1

Joined pattern segment-based sequential patternmining algorithm for biological datasets
下载PDF
导出
摘要 传统的序列模式挖掘算法应用在生物序列上有其局限性,根据生物序列的特点,提出了基于相邻频繁模式段的模式挖掘算法-JPS。首先产生相邻频繁模式段,然后对这些频繁模式段进行组合,产生新的频繁模式。通过实验分析,该方法在相似性很强的序列数据库中比传统的PrefixSpan算法效率高。通过对真实的蛋白质序列家族库的处理,证明该算法能有效处理生物序列数据。 Traditional algorithms for sequential pattern mining have limits when dealing with biological datasets.Biology sequence has its own characters.Based on these characters,the author develops Joined frequent Pattern Segment approach,JPS,for mining biological sequences.First,the joined frequent pattern segments are produced.Then,longer frequent patterns can be obtained by combining the above segments.The experiment shows JPS has better performance than PrefixSpan.Through dealing with the real protein family database,it is proved that the algorithm can deal with biology sequence data efficiently.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第2期190-193,共4页 Computer Engineering and Applications
基金 西北工业大学研究生创新实验室资助(No.06044)。
关键词 前缀 频繁集 相邻频繁模式段 模式组合 prefix frequent set joined frequent pattern segment pattern combination
  • 相关文献

参考文献12

  • 1Gibbs A J,McIntyre G A.The diagram:a method for comparing sequence[J].Eur J Biochem,1970,16:1-11.
  • 2Needleman S B,Wunsch C D.A general method applicable to the search for similarities in the amino acid sequence of two proteins[J].Journal of Molecular Biology,1970,48:443-453.
  • 3Smith T F,Waterman M S.Identification of common molecular subsequences[J].J Mol Bio,1981,147:195-197.
  • 4Lipman D J,Pearson W R.Rapid and sensitive protein similarity searches[J].Science,1985,227:1435-1441.
  • 5Lipman D J,Pearson W R.Improved tools for biological sequence comparison[J].Proc Narl Acad Sci,1988:2444-2448.
  • 6Altschul S F,Gish W,Miller W,et al.Basic local alignment search tool[J].Journal of Molecular Biology,1990,215:403-410.
  • 7Agrawal R,Srikant R.Mining sequential patterns:generalizations and performance improvements[C]//LNCS:Proc 5th Int Conf Extending Database Technology(EDBT),Avignon,1996:3-17.
  • 8Zaki M J.Fast mining of sequential pattern in very large data bases,668[R].1997-11.
  • 9Han J,Pei J,Yin Y.Mining frequent patterns without candidate generation[C]//Proc 2000 ACM-SIGMOD Int'l Conf Management of Dta(SIGMOD'00).Dallas:TX ACM Press,2000:1-12.
  • 10Han J,Pei J,Mortazavi-Asl B,et al,FreeSpan:frequent patternprojected sequential pattern mining[C]//Proc 2000 ACM SIGKDD Int'l Conf Knowledge Discovery in Databases(KDD '00),2000:355-359.

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部