期刊文献+

关于环面网格和对角网格网络的对剖宽度 被引量:1

On Bisection Width of Digonal and Toroidal Mesh Networks
下载PDF
导出
摘要 Tang和Padubidri在1994年曾指出:n×k(n,k为奇数且3≤n≤k)的环面网格网络(ToroidalMeshNetworks,TM)TM(n,k)和对角网格网络(DiagonalMeskNetworks,DM)DM(n,k)的对剖宽度分别为b(TM(n,k))=2n+2和b(DM(n,k))=4n.本文证明了前一等式确实成立但后一等式不然:当n=k时,DM(n,n)与TM(n,n)同构,从而b(DM(n,n))=b(TM(n,n))=2n+2;当3≤n<k<2n时,b(DM(n,k))≤2k;当2n≤k时,b(DM(n,k))≤4n. In 1994 Tang and Padubidri indicated that for an n×k network ( n,k are odd and 3≤n≤k ), the toroidal mesh has a bisection width b (TM( n,k ))=2 n +2; whereas the bisection width for the diagonal mesh is b (DM( n,k))=4n . The present work shows the first assertion is indeed true but the second one is not so. In fact it is proved that DM (n,n )TM( n,n ), hence b( DM (n,n))=2n+2 for odd n ≥3; b (DM( n,k))≤2k for 3≤ n<k<2n; and b (DM( n,k))≤4n for k≥2n .
作者 李乔 杨秀文
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 1997年第6期1-5,共5页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金
关键词 环面网格网络 对角网格网络 对剖宽度 toroidal mesh networks diagonal mesh networks bisection width
  • 相关文献

参考文献2

  • 1Tang K W,IEEE Trans Computs,1994年,43卷,7期,815页
  • 2陈国良,并行算法的设计与分析,1994年,468页

同被引文献12

  • 1Lengauer T. Combinatorial Algorithms for Integrated Circuit Layout [ M ]. New York:John Wiley and Sons, 1990.
  • 2Bhatt S N,Leighton F T. A framework for solving VLSI graph layout problems [ J ]. Journal of Computer and System Sci- ences, 1984,28 (2) : 300-343.
  • 3Garey M R,Johnson D S. Some simplified NP-complete graph problems [ J ]. Theoretical Computer Science, 1976,1 (3) : 237 -267.
  • 4Boppana R B. Eigenvalues and graph bisection: An average ease analysis [ C ]//Foundations of Computer Science. 28th Annual Symp,Los Angeles,1987: 280-285.
  • 5Donath W E, Hoffman A J. Lower bounds for the partitioning of graphs[ J ]. IBM Journal of Research and Develop, 1973, 17 (5) :420-425.
  • 6Choi C, Burer S. A semidefinite programming approach to the hypergraph minimum bisection problem [ J ]. Optimization, 2011.60(3] :413-427.
  • 7Kofidis E, Regalia P A. On the best rank-1 approximation of higher-order supersymmetric tensors [ J ]. SIAM J Matrix Anal Appl, 2002,23 ( 3 ) : 863- 884.
  • 8Qi Liqun. Eigenvalues of a real supersymmetric tensor[ J ]. Journal of Symbolic Computation,2005 ,40 (6) : 1302-1324.
  • 9Lira L-H. Singular values and eigenvalues of tensors:a variational approach [ C J//Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing,2005,1 : 129-132.
  • 10Cooper J, Dutle A. Spectra of uniform hypergraphs [ J ]. Linear Algebra and its Applications,2012,436 (9) : 3268-3292.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部