期刊文献+

基于改进粒子滤波的传感器网络目标跟踪研究 被引量:2

A Study on the Target Tracking in Sensor Networks Based on Improved Particle Filtering
下载PDF
导出
摘要 在分析粒子滤波算法(PF)的基础上研究了一种改进的粒子滤波算法-无迹粒子滤波算法(UPF).UPF算法使用无迹卡尔曼滤波(UKF)算法产生重要密度函数.动态组织传感器网络节点成簇,将UPF算法和PF算法应用于无线传感器网络(WSNs)的目标跟踪,实现了对网络中做匀速直线运动的单个目标的跟踪.最后将UPF算法与PF算法进行比较.仿真结果表明,改进算法UPF滤波提高了粒子利用效率,精度更高,跟踪性能更好. Particle Filter (PF) algorithm is analyzed,and an improved PF algorithm (UPF: Unscented Particle Filter) is discussed in this paper. Importance density function is generated by Unscented Kalman Filter (UKF). Sensor nodes are organized into clusters,UPF and PF algorithms areapplied to target tracking in wireless sensor networks (WSNs) , to track single target which moves in uniform rectilinear motion. Finally, the comparison of two algorithm's performance in target tracking is presented and the simulation results are also given, From these results we can see that UPF increases the utilization ratio of particles, has better tracking accuracy and better tracking performance.
出处 《沈阳理工大学学报》 CAS 2007年第6期1-4,共4页 Journal of Shenyang Ligong University
关键词 无线传感器网络 粒子滤波 UPF 目标跟踪 wireless sensor networks particle filter (PF) UPF ( unscented particle filter ) target tracking
  • 相关文献

参考文献6

  • 1Gordon N J,Sahnond D J,Smith A F M.Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J].IEE Proceedings on Radar and Signal Processing,1993,140 (2):107-113.
  • 2Sanjeev Arulampalam M,Simon Maskell,Neil Gordon,et al.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Transactions on Signal Processing,2002,50(2):174-188.
  • 3Douncet A,Godsil N,Andrien C.On sequential monte carlo sampling methods for bayesian filtering[J].Statistics and Compution,2000,10 (3):197-208.
  • 4唐剑,史浩山,韩忠祥.无线传感器网络中的目标跟踪算法[J].空军工程大学学报(自然科学版),2006,7(5):25-29. 被引量:7
  • 5Doucet A,Freitas N,Gordon N.Sequential monte carlo methods in practice[M].Newyork:Springer-Verlag,2001.
  • 6Merwe R V,Douncet A,De Freitas N,et al.The unscented particle filter[R].Technical Report CUED/F-INPENG/TR 380,Cambridge University Engineering Department,2000.Also in:Adv Neural Inform Process Syst,Dec 2000.

二级参考文献10

  • 1Mechitov K, Sundresh S, Kwon Y, el at. Agha. Cooperative Tracking with Binary - Detection Sensor Networks [ A ]. Proceedings of the first international conference on Embedded networked sensor systems [ C ]. 2003,332 -333.
  • 2Kim, Woo Young, Kirill Mechitov, el at. On Target Tracking with Binary Proximity Sensors [ A ]. Fourth International Conference on Information Processing [ C ]. Sensor Networks ( IPSN 05 ) :2005,125 - 129.
  • 3Rabbat M G,Nowak R D. Decentralized Source Localization and Tracking[ A]. in Proceedings of the 2004. IEEE International Conference on Acoustics, Speech,. and Signal Processing Montreal[ C ]. Canada :2004,921 - 924.
  • 4Chen Wei - Peng , Hou J C , Lui Sha. Dynamic Clustering for Acoustic Target Tracking in Wireless Sensor Networks[ A]. Network Protocols 2003. Proceedings 11th IEEE International Conference[ C]. 2003,284 - 294.
  • 5Friedlander D, Griffin C, Jacobson N, el at. Dynamic Agent Classification And Tracking Using An Ad Hoc Mobile Acoustic Sensor Network[ A]. submitted to the Eurasip Journal on Applied Signal Processing[ C ]. 2002,215 -220.
  • 6Yao K. Blind Beamforming on a Randomly Distributed Sensor Array System [ J ]. IEEE Journal on Selected Areas in Communications, 1998,16 : 1555 - 1567.
  • 7Phoha S , Jacobson N , Friedlander D, el at. Sensor Network Based Localization and Target Tracking Through Hybridization in the Operational Domains of Beamforming and Dynamic Space - Time Clustering [ A ]. Global Telecommunications Conference,2003. GLOBECOM 03. IEEE[ C]. 2003:2952 -2956.
  • 8Yu Xingbo . Adaptive Target Tracking in Sensor Networks[ A]. 2004 Communication Networks and Distributed Systems Modeling and Simulation Conference[ C ]. San Diego:2004,253 -258.
  • 9Gordon N J,Salmond D J,Smith A F M. Novel Approach to Nonlinear/Non- Gaussian Bayesian State Estimation[JJ. Radar and Signal Processing IEE Proceedings F. 1993,140:107 -113
  • 10Sheng X - H , Hu Y - H . Sequential Acoustic Energy Based Source Localization Using Particle Filter in a Distributed Sensor Network [ A ]. ICASSPO4 [ C ]. 2004,972 - 996.

共引文献6

同被引文献16

  • 1胡洪涛,敬忠良,李安平,胡士强.非高斯条件下基于粒子滤波的目标跟踪[J].上海交通大学学报,2004,38(12):1996-1999. 被引量:54
  • 2李建中.无线传感器网络专刊前言[J].软件学报,2007,18(5):1077-1079. 被引量:21
  • 3季莹,张三同.基于粒子滤波的无线传感器网络目标跟踪[J].中国科技信息,2007(21):260-262. 被引量:3
  • 4I F Akyildiz, W Su. Wireless sensor networks: A survey [ J ]. Computer Networks, 2002,38(4): 393-422.
  • 5H Yang, B Sikdar. A protocol for tracking mobile targets using sensor networks [ C ]. In : Sensor Network Protocols and Applica- tions, Proceedings of the First IEEE, 2003 IEEE Intemational Workshop on, 2003:71-81.
  • 6X H Sheng, Y H Hu, Ramanathan P. Distributed particle filter with GMM approximation for multiple targets localization and track- ing in wireless sensor network[ C ]. Proe of 4th Int Symposium on Information Processing in Sensor Networks. Los Angeles: ACM Press, 2005:181-188.
  • 7Yang H, Sikdar B. A protocol for tracking mobile targets using sensor networks. In: Sensor Network Protocols and Applications, Proceed- ings of the First IEEE, 2003 IEEE International Workshop on ,2003 : 7181.
  • 8Arulampalam M S, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non Gaussian Bayesian tracing. IEEE Trans on Signal Processing, 2002; 50(2) : 174188.
  • 9Doucet A, Freitas N, Gordon N. Sequential monte carlo methods in practice. New York : Springer Verlag, 2001.
  • 10黄艳,梁韦华,于海斌.基于粒子滤波的无线传感器网络目标跟踪算法[J].控制与决策,2008,23(12):1389-1394. 被引量:20

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部