期刊文献+

一种基于危险信号的拒绝服务入侵检测方法 被引量:5

A Method for Denial of Service Intrusion Detection Based on Immune Danger Theory
下载PDF
导出
摘要 针对拒绝服务(Denial of Service,DoS)攻击的特点,提出了一种基于免疫危险理论的新型入侵检测方法,设计、实现了检测算法和抗体变异、进化算法。引入血亲类方法分类抗原/抗体,定义了抗原凋亡和坏死的过程,定量计算抗原危险信号和网络危险度,并以此检测DoS攻击。仿真实验表明该方法不仅具有基于传统人工免疫理论的入侵检测自学习、自适应的优点,而且误警率降低87.5%,检测效率更高。 A new denial of service intrusion detection model based on the immune danger theory was presented, according to the characteristic of denial of service intrusion. The model and the antibody evolution algorithm were designed and realized. In the model, antigen/antibody was classified by consanguinity, the procedure of antigen apoptosis and necrosis were defined, and both danger signal and risk of network were calculated. This model can detect denial of service intrusion by the danger signal and risk of network. The results of the experiment showed that the method can not only keep the advantages of self-learning and self-adaptation of intrusion detection based on tradition artificial immune artificial immune, but also decrease the false positive rate by 87.5%.
出处 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2007年第5期116-120,共5页 Journal of Sichuan University (Engineering Science Edition)
基金 国家自然科学基金资助项目(60573130 60502011) 教育部博士点基金资助项目(20030610003) 教育部新世纪优秀人才计划(NCET-04-0870)
关键词 免疫危险理论 危险信号 拒绝服务攻击 抗原凋亡和坏死 血亲类分类法 immune danger theory danger signal denial of service intrusion antigen apoptosis and necrosis con- sanguinity classification
  • 相关文献

参考文献13

二级参考文献117

  • 1李涛.基于免疫的网络安全风险检测[J].中国科学(E辑),2005,35(8):798-816. 被引量:40
  • 2李涛.Idid:一种基于免疫的动态入侵检测模型[J].科学通报,2005,50(17):1912-1919. 被引量:26
  • 3SkoudisEd.反击黑客[M].北京:机械工业出版社,2002..
  • 4LEE W,STOLFO S,MOK K. A data mining framework for adaptive intrusion detection[EB/OL]. http://www.cs.columbia.edu/~sal/ hpapers/framework.ps.gz.
  • 5LEE W, STOLFO S J, MOK K. Algorithms for mining system audit data[EB/OL]. http://citeseer.ist.psu.edu/lee99algorithms.html. 1999.
  • 6KRUEGEL C, TOTH T, KIRDA E.Service specific anomaly detection for network intrusion detection[A]. Proceedings of the 2002 ACM Symposium on Applied Computing[C]. Madrid, Spain, 2002. 201-208.
  • 7LIAO Y, VEMURI V R. Use of text categorization techniques for intrusion detection[A]. 11th USENIX Security Symposium[C]. San Francisco, CA, 2002.
  • 8An extensible stateful intrusion detection system[EB/OL]. http://www.cs.ucsb.edu/~kemm/NetSTAT/doc/index.html.
  • 9ILGUN K. USTAT: A Real-Time Intrusion Detection System for UNIX[D]. Computer Science Dep University of California Santa Barbara, 1992.
  • 10The open source network intrusion detection system [EB/OL]. http://www.snort.org/.

共引文献384

同被引文献98

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部