期刊文献+

利用Gibbs距离图Snake模型分割医学图像 被引量:1

Medical image segmentation based on Gibbs morphological gradient and distance map Snake model
下载PDF
导出
摘要 目的提出利用Gibbs距离图Snake模型分割医学图像的算法。该方法能克服医学图像固有的噪声和伪边缘干扰,收敛到正确的目标轮廓。方法首先推导Gibbs形态学梯度,然后提出基于Gibbs形态学梯度的距离图Snake模型的医学图像分割方法。结果本文所提出的算法克服了传统距离图Snake模型的上述缺点。结论本文所提出的方法分割结果鲁棒性好,分割过程无须人工干预,适合应用于临床医学图像分割。 Objective To propose a new algorism for medical image segmentation based on Gibbs morphological gradient and distance map (DM) Snake model, which allows identification of the correct contours of the objects when processing medical images with noises and pseudo-edges. Methods Gibbs morphological gradient was deduced and the method for image segmentation based on Gibbs morphological gradient and distance map Snake model was presented. Results This new medical image segmentation algorithm proved to effectively suppress the noises and pseudo-edges when calculating distance map. Conclusion The proposed algorism is robust for image noise suppression and allows easy implementation in clinical image segmentation without the need of user interventions.
出处 《南方医科大学学报》 CAS CSCD 北大核心 2008年第1期48-51,共4页 Journal of Southern Medical University
基金 国家重点基础研究(973)发展计划(2003CB716104)~~
关键词 图像分割 GIBBS随机场 SNAKE模型 形态学操作 image segmentation Gibbs random field Snake model morphological operation
  • 相关文献

参考文献2

二级参考文献9

  • 1Gerhard W.Image analysis random fields and dynamic monte carlo methods[M].Berlin:Springer-Verlag,1995:180-200.
  • 2Celeux,G,Forbes F,Peyrard N.EM procedures using mean fieldlike approximations for Markov model-based image segmentation[J].Pattern Recognit,2003,36 (1),131-44.
  • 3Krishnamachari S,Chellappa R.Multiresolution Gauss-Markov random field models for texture segmentation [ J ].IEEE Trans Image Process,1997,(2):251-67.
  • 4Stan ZL.Markov random field modeling in image analysis [ M ].Tokyo:Springer-Verlag,2001:8-26.
  • 5Helene C,Alain H,Wojciech P.Fuzzy Random Fields and Unsupervised Image Segmentation [J].IEEE Trans Geosci Remot Sensing,1993,31(4),801-10
  • 6Wei J,Li ZN.An efficient two-pass MAP-MRF algorithm for motion estimation based on mean field theory [J].IEEE Trans Circ Sys Video Tech,1999,9(6):960-72.
  • 7Jie W,Izidor G.MRF-MAP-MFT visual object segmentation based on motion boundary field [J ].Pattern Recognit Lett,2003,24(16):3125-39.
  • 8Zhang J.Mean field theory in EM procedures for MRF's[J].IEEE Trans Signal Process,1992,40(10):2570-83.
  • 9Pauli Kuosmanen,Pertti Koivisto,Heikki Huttunen,Jaakko Astola.Shape preservation criteria and optimal soft morphological filtering[J].Journal of Mathematical Imaging and Vision.1995(4)

共引文献2

同被引文献17

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部