摘要
设L={0,1/2,1},Reg(XL)是L-实直线(R(L),δ)的水平拓扑空间(R(L),lL,1/2(δ))中的正则开集的全体.利用R(L)与平面R2的子集XL={〈r,s〉∈R2|r≤s}之间的序同构关系,证明了(Reg(XL),)是有补的locale,但它无素元,无余素元且不满足完全分配律.
Let L={0,1/2,1},Reg(XL) is the set of all regular open sets in (R(L),lL,1/2(δ)) (a level space of L-real line (R(L),δ)). By using the order isomorphism between R(L) and XL = {(r,s)∈R^2r ≤s} (a subset of R2), it is proved that (Reg(XL), C) is a locale which has complementary operation, but has neither prime element nor coprime element, which is not a completely distributive complete latrice too.
出处
《纺织高校基础科学学报》
CAS
2007年第4期331-334,共4页
Basic Sciences Journal of Textile Universities
基金
国家自然科学基金(10271069)
陕西师范大学研究生培养创新基金资助项目