摘要
对作者得到的保留了一阶非线性项O(α)及四阶色散项O(β8)(其中:α=A/h0,β=h0/L;A特征波高,L特征波长,h0特征水深)的Boussi-nesq类方程求解其孤立波解,与传统Boussinesq方程的孤立波解进行了比较,为数值求解一阶非线性、四阶色散性方程提供了精确的初始条件.
The authors obtain the solution of a solitary wave for the Boussinesq type equations, which retain the first order nonlinear terms and the fourth order dispersive terms. Comparing it with the solitary wave solution for the traditional Boussinesq equations show that its nonlinearity is the stronger. The results provide the exact initial condition for solving the Boussinesq type equations with high order terms.
出处
《大连理工大学学报》
EI
CAS
CSCD
北大核心
1997年第4期490-494,共5页
Journal of Dalian University of Technology
关键词
孤立波
非线性项
色散项
波浪
Boussingsq方程
solitary waves/the first order nonlinear terms
the fourth order dispersive terms
Boussinesq type equations