期刊文献+

基于自适应多向独立成分分析的间歇过程监控的研究

Batch process monitoring based on adaptive multi-way independent component analysis
原文传递
导出
摘要 针对间歇过程批次与批次之间,操作条件缓慢变化的特性,提出一种基于自适应多向独立成分分析(MICA)的监控算法。该方法首先用MICA法建模,然后在历史数据集中加入新的正常批次并剔除最早批次,逐渐更新模型,同时引入遗忘因子,提高对新过程特性的适应性。青霉素发酵过程的仿真结果表明,自适应MICA比MICA更准确地描述过程行为,并有效减少检测故障时的误报。 Most industrial batch processes generally exhibit batch-to-batch variation in some degree. In this paper, an adaptive MICA method is proposed for batch process monitoring. This approach first gives an MICA model based on the historical database. The new batch data when monitored normally is added to the database and the oldest one is removed. On the basis of new database the old MICA model is revised by using forgetting factors to adapt to new normal conditions. The simulation results in monitoring fed-batch penicillin production show that the proposed approach effectively eliminates the false alarms generated by the fixed model.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2008年第1期27-30,共4页 Computers and Applied Chemistry
基金 国家863资助项目(2004AA412050)
关键词 间歇过程 故障检测 自适应MICA 遗忘因子 batch process, fault detection, adaptive MICA, forgetting factors
  • 相关文献

参考文献1

二级参考文献12

  • 1Detection with Independent Component Analysis and Support Vector Data Description[C]//Proc.of the 1999 IEEE Signal Processing Society workshop.Piscataway,NJ,USA,1999:67-76.
  • 2Jutten C,Herault J.Independent Component Analysis Versus PCA[C]// Proceedings of EUSIPCO-88.Fourth European Signal Processing Conference.Amsterdam,Netherlands,1988:643-646.
  • 3Comon P.Independent Component Analysis-A New Concept[J].Signal Processing (S0165-1684),1994,36(3):287-314.
  • 4Hyv(a)rinen A.Fast and Robust Fixed-Point Algorithms for Independent Component Analysis[J].IEEE Transactions on Neural Networks (S1045-9227),1999,10(3):622-634.
  • 5Y M Cheung,L Xu.An Empirical Method to Select Dominant Independent Components in ICA Time Series Analysis[C]//Proceedings of International Conference on Neural Networks,Washington,DC,USA,1999:3883-3887.
  • 6R F Li,X Z Wang.Dimension Reduction of Process Dynamic Trends Using Independent Component Analysis[J].Comput.Chem.Eng.(S0098-1354),2002,26(3):467-473.
  • 7A D Back,A S Weigend.A First Application of Independent Component Analysis to Extracting Structure from Stock Returns[J].Int.J.Neural Sys.(S0129-0657),1997,8(4):473-484.
  • 8J-F Cardoso,A Soulomica.Blind Beamforming for non-Gaussian signals[J].IEE Proceedings,Part F:Radar and Signal Processing (S0956-375X),1993,140(6):362-370.
  • 9Y M Cheung,L Xu.Independent component ordering in ICA time series analysis[J].Neurocomputing (S0925-2312),2001,41(10):145-152.
  • 10B W Silverman.Density Estimation for Statistics and Data Analysis[M].UK:Chapman & Hall,1986.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部