期刊文献+

基于k-近邻算法预测蛋白质热稳定性的研究 被引量:1

Prediction of protein thermostability with a k-nearest neighbors algorithm
原文传递
导出
摘要 基于一级结构信息预测蛋白质热稳定性,对于利用计算机筛选热稳定性蛋白具有重要意义。本文采用k-近邻算法从序列出发预测蛋白质的热稳定性,用自一致性检验、交叉验证和独立样本测试等三种方法评估。仅用20种氨基酸组成作为特征变量时,识别的正确率分别可达100%,87.7%和89.6%;而引入8个新变量后,其精度分别为100%,89.6%和90.2%,对小蛋白质分子识别的精度提高了2.4%。同时探讨了蛋白质分子大小对识别效果的影响。 The identification of the thermostability from the amino acid sequence information would be helpful in computational screening for thermostable proteins. The k-Nearest Neighbors (kNN) classifiers were applied to discriminate thermophilie and mesophilie proteins. Three methods, namely, self-consistency test, 5-fold cross-validation and independent testing with other dataset, were used to evaluate the performance and robust of the models. When 50 amino acid composition were used as variables, it achieved overall accuracy of 100% , 89.6% and 90. 2% , respectively. When another 8 variables were added, the overall accuracy was 100% , 89. 6% and 90.5% , the prediction accuracy for the small-size protein improved 2.4%. The influence of protein size on prediction accuracy was also addressed.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2008年第1期39-41,共3页 Computers and Applied Chemistry
基金 "863"计划资助项目(2006AA020102) 国务院侨办科研基金(No.05Q0018).
关键词 K-近邻 蛋白质热稳定性 模式识别 计算机筛选 k-nearest neighbors, protein thermostability, pattern recognition, computational screening
  • 相关文献

参考文献3

二级参考文献14

  • 1陈念贻,模式识别方法在化学化工中的应用,2000年
  • 2王碧泉,模式识别理论、方法和应用,1989年
  • 3Yang Y, Hu X. A re- examination of text categorization methods [ A]. Proceedings 22^nd Annual International ACM SIGIR Confetence on Research and Develolanent in Information Retrieval(SIGIR '99)[C]. Berkeley: ACM Press, 1999.42-49.
  • 4Yah Qiu Chen; Nixca, M. S.; Damper, R. I. Implementing the k - nearest neighbour rule via a neural network[A]. Neural Netwodm, 1995 [ C ]. Proceedings., IEEE.International Coderence on, 1995. 136- 140.
  • 5Soucy, P.; Mineau, G. W. A simple KNN algorithm for text categodzation[ A]. Data Mining, 2001. ICDM 2001[C], Proceedings IEEE International Codeaevce on, 2001.647-648.
  • 6徐建锁 王正欧.一种基于Kohonen网络和模式聚合理论的高效文本分类新方法[R].天津:天津大学系统工程研究所,2004..
  • 7Yang Y, Pedersen JP. A comparative study on feature selection in text categorization[ A]. Proceedings of the Fourteenth Intematlonal Confemnce on Machine Learning (ICML'7)[C]. San Francisco: Morgan Ksufmann Publishers, 1997.412 - 420.
  • 8Salton G,Lesk M E.Computer Evaluation of Index and Text Processing. Association for Computing Machinery,1968,15(1).
  • 9Maron M E. On Relevance,Probabilistic Indexing and Information Retrieval. Journal of the ACM,1960,7(3).
  • 10Lewis D D. Feature Selection and Feature Extraction for Text Categorization. In Proceedings of Speech and Natural Language Workshop. Defense Advanced Research Projects Agency,Morgan Kaufmann,1992-02:212-217.

共引文献120

同被引文献18

  • 1张松,黄波,夏学峰,孙之荣.蛋白质亚细胞定位的生物信息学研究[J].生物化学与生物物理进展,2007,34(6):573-579. 被引量:39
  • 2K. V. R. Reddy, R. D. Yedery, C. Aranha. Anitimicrobial peptides : premises and promises [ J ]. International Journal of Antimicrobial Agents. 2004,24 (6) : 536 - 547.
  • 3H. G. Boman, I. Nisson, B. Rasmuson. Inducible antibacterial defense system in Drasophial [ J ]. Nature. 1972,237 : 232 - 235.
  • 4H. G. Boman. Antibacterial peptides: basic facts and emer- ging concepts [ J ] Intern Med. 2003,254 ( 3 ) : 197 - 215.
  • 5X. Xiao,P. Wang, W. Z. Lin, et al. iAMP -2L: a two - level multi - label classifier for identifying antimicrobial peptides and their functional types[J]. Analytical Biochem- istry. 2013, 436 (2) : 168 - 177.
  • 6Z. Wang, G. Wang. APD: the antimicrobial peptide data- base [ J ]. Nucleic Acids Research. 2004,32 ( supppll ) : 590 - 592.
  • 7G. Wang, X. Li, Z. Wang. APD2 : the updated antimicro- bial peptide database and its application in peptide design [ J ]. Nucleic Acids Research. 2009,37 ( suppll ) : 933 - 937.
  • 8W. Chen, L. F. Luo. Classi cation of antimicrobial peptide using diversity measure with quadratic discriminant analysis [ J]. Journal of Microbiological Methods. 2009,78 (1) :94 -96.
  • 9S. Thomas, S. Karnik, R.S. Barai, et. al. Idicula -Thomas. CAMP: a useful resource for research on antimicrobial peptides [ J ]. Nucleic Acids Research. 2010,38:774 - 780.
  • 10K. C. Chou, H. B. Shen. Predicting Protein Subcellular Lo- cation by Fusing Multiple Classifiers [ J ]. Journal of Cellu- lar Biochemistry. 2006,99 (2) :517 - 527.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部