期刊文献+

一种基于RBUKF滤波器的SLAM算法 被引量:8

Algorithm of SLAM Based on RBUKF
下载PDF
导出
摘要 同时定位与建图(SLAM)是智能机器人实现真正自治的必要前提,是一个比单独研究定位或者建图更加困难的课题。该文将基于SUT变换的RBUKF滤波器应用于平面静态环境下的同时定位与建图算法,它能够在同样计算复杂度的情况下,避免基于扩展卡尔曼滤波器(EKF)SLAM算法由于线性化误差大导致滤波器发散,从而出现建图错误的缺点。基于公共数据集的实验表明该方法估计的最终地图比EKF的方法精度高。 Simultaneous Localization And Mapping(SLAM) is a necessary prerequisite to make robot autonomous, which is a harder research topic than localizing or mapping. A Rao-Blackwellised Unscented Kalman Filter(RBUKF) based SLAM method is presented which uses the Scaled Unscented Transformation(SUT) to sample the Sigma points for robot operating in plain static environment. With the same computing complexity, RBUKF can avoid linearization error introduced in the Extended Kalman Filter(EKF) filter, which can induce the final map error. The experimental result of the method based on the public dataset is better than the EKF based method according to the precise of the final estimated map.
出处 《计算机工程》 CAS CSCD 北大核心 2008年第1期17-19,29,共4页 Computer Engineering
基金 国家自然科学基金资助项目(60605021) 国家“863”计划基金资助项目(2006AA04Z223)
关键词 同时定位与建图 Rao—Blackwellised Unscented卡尔曼滤波器 SUT变换 Simultaneous Localization And Mapping(SLAM) Rao-Blackwellised Unscented Kalman Filter(RBUKF) Scaled Unscented Transformation(SUT)
  • 相关文献

参考文献11

  • 1Smith R,Cheeseman P.On the Representation and Estimation of Spatial Uncertainly[J].International Journal of Robotics Research,1987,5(4):56-68.
  • 2Guivant J,Nebot E.Optimization of the Simultaneous Localization and Map Building Algorithm for Real Time Implementation[J].IEEE Transactions on Robotics and Automation,2001,17(3):242-257.
  • 3Leonard J J,Whyte D F.Simultaneous Map Building and Localization for an Autonomous Mobile Robot[C]//Proceedings of the IEEE International Workshop on Intelligent Robots and Systems.Osaka,Japan:[s.n.],1991:1442-1447.
  • 4Julier S J,Uhlmann J K.A Counter Example to the Theory of Simultaneous Localization and Map Building[C]//Proc.of IEEE International Conference on Robotics and Automation.Seoul,Korea:[s.n.],2001:4238-4243.
  • 5王璐,蔡自兴.未知环境中移动机器人并发建图与定位(CML)的研究进展[J].机器人,2004,26(4):380-384. 被引量:45
  • 6Andrade-Cetto J,Vidal-Calleja T,Sanfeliu A.Unscented Transformation of Vehicle States in Slam[C]//Proceedings of the IEEE International Conference on Robotics and Automation.Barcelona,Spain:[s.n.],2005:324-329.
  • 7Juliter S J.The Spherical Simplex Unscented Transformation[C]//Proceedings of the American Control Conference.Denver:[s.n.],2003:2430-2434.
  • 8Julier S J.The Scaled Unscented Transformation[C]//Proceedings of the American Control Conference,Anchorage.AK,USA:[s.n.],2002:4555-4559.
  • 9Martinez-Cantin R,Castellanos J A.Unscented SLAM for Largescale Outdoor Environments[C]//Proc.of the International Conference on Intelligent Robots and Systems.Edmonton,Canada:[s.n.],2005:328-333.
  • 10Briers M,Maskell S R,Wright R.A Rao-Blackwellised Unscented Kalman Filter[C]//Proc.of the 6th International Conference on Information Fusion.[S.l.]:IEEE Press,2003:55-61.

二级参考文献19

  • 1Willdor R, Wenzel L. Giving a Compass to a Robot - Probabilistic Techniques for Simultaneous Localization and Map Building (SLAM)in Mobile Robotics[ R]. Berkeley: University of California, 2002.
  • 2Thrun S, Koller D, et al. Simultaneous Mapping and Localization With Sparse Extended Information Filters: Theory and Initial Results[ R]. USA: Carnegie Mellon University, 2002.
  • 3Di Marco M, Garulli S, Lacroix S, et al. A set theoretic approach to the simultaneous localization and map building problem [ A ]. Proceedings of the 39th IEEE Conference on Decision and Control [ C ].Sidney: 2000. 833-838.
  • 4Baley T, Nebot E M, Rosenblatt J K, et al. Data association for mobile robot navigation: A graph theoretic approach[ A]. Proceedings of the IEEE International Conference on Robotics and Automation [ C ].San Francisco: 2000. 2512 -2517.
  • 5Montemerlo M, Thrun S. FastSLAM: a factored solution to the simultaneous localization and mapping problem [ A ]. Proceedings of the Eighteenth National Conference on Artificial Intelligence [ C ]. Edmonton: AAAI Press,2002:593 -598.
  • 6Cox I, Wilfong G. Autonomous Robot Vehicle[ M]. London: Springer-Verlag, 1990. 167 - 193.
  • 7Montemerlo M, Thrun S. Simultaneous localization and mapping with unknown data association using fastSLAM [ A ]. Proceedings of the IEEE International Conference on Robotics and Automation [ C ].Taiper: 2003. 1985 - 1991.
  • 8Guivant J, Nebot E, Durrant-Whyte H. Simultaneous localization and map building usingnatural features in outdoor environments[ A]. 6th International Conference on Intelligent Autonomous Systems[ C]. Italy: 2000. 581 -588.
  • 9Guivant J, Nebot E. Optimization of simultaneous localization and map building algorithm for real time implementation[ J]. IEEE Transactions on Robotics and Automation, 2001,17(3): 242 -257.
  • 10Guivant J, Nebot E. Improved computational and memory requirements of simultaneous localization and map building algorithms [ A ].Proceedings of the 2002 IEEE International Conference on Robotics & Automation [G]. Washington, DC: 2002. 2731 -2736 .

共引文献44

同被引文献35

  • 1王璐,蔡自兴.未知环境中移动机器人并发建图与定位(CML)的研究进展[J].机器人,2004,26(4):380-384. 被引量:45
  • 2陈卫东,张飞.移动机器人的同步自定位与地图创建研究进展[J].控制理论与应用,2005,22(3):455-460. 被引量:60
  • 3厉茂海,洪炳熔.移动机器人的概率定位方法研究进展[J].机器人,2005,27(4):380-384. 被引量:15
  • 4Elfes A, Moravec H P. High Resolution Maps from Wide-angle Sonar[C]//Proc. of IEEE International Conference on Robotics and Automation. [S. l.]: IEEE Press, 1985:116-121.
  • 5Gasos J, Rosctti A. Uncertainty Representation for Mobile Robots Perception, Modeling and Navigation in Unknown Environments[J] Fuzzy Sets and Systems, 1999, 10(1): 1-24.
  • 6Thrun S, Fox D, Burgard W. A Probabilistic Approach to Concurrent Mapping and Localization for Mobile Robots[J]. Machine Learning and Autonomous Robots, 1998, 31 (1): 29-53.
  • 7Smarandache F, Desert J. Advances and Applications of DSmT for Information Fusion[M]. [S.l.]: American Research Press, 2004: 61-103.
  • 8Ribo M, Pinz A. A Comparison of Three Uncertainty Calculi for Building Sonar-based Occupancy Grids[J]. Robotics and Autonomous Systems, 2001, 35(1 ): 201-209.
  • 9Collins T, Collins J, O'Sullivan S. Evaluating Techniques for Resolving Redundant Information and Specularity in Occupancy Grids[C]//Proc. of the 18th Australian Joint Conference on Advances in Artificial Intelligence. Sydney, Australia: [s. n.], 2005: 235-244.
  • 10Zou Yi, Ho Y K, Chua Chin Seng. A New Solution for Specular Reflection in the Multi-ultrasonic Sensor Fusion for Mobile Robots[C]//Proc. of IEEE International Conference on Intelligent Robotics and System. [S. l.]: IEEE Press, 2000: 387-391.

引证文献8

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部