期刊文献+

基于决策树的软件分类方法 被引量:6

Software Classification Based on Decision Tree
下载PDF
导出
摘要 提出一种基于决策树SLIQ算法的软件分类方法,在利用现有测试工具的条件下,编写应用接口,获取软件的外部属性和内部属性数据。对异构数据源进行清理转换,从中提取软件分类的规则,对软件进行细粒度的划分,构建分类模型并在数据库管理系统不同版本的分类中应用。 This paper proposes an approach to software classification in fine-grain based on SLIQ algorithm, uses testing tools and writes API's to get both inner and outer attributes of software, cleans these data and abstract classification rules of software, and builds a classifying model applied in DBMS classification.
出处 《计算机工程》 CAS CSCD 北大核心 2008年第1期56-58,共3页 Computer Engineering
基金 国家"863"计划基金资助项目(2005AA4Z3030)
关键词 软件分类 决策树 SLIQ算法 software classification decision tree Supervised Learning In Quest(SLIQ) algorithm
  • 相关文献

参考文献5

  • 1Han Jiawei,Kamber M.数据挖掘:概念与技术[M].北京:机械工业出版社,2001.
  • 2Mehta M,Agrawal R,Rissancn J.SLIQ:A Fast Scalable Classifier for Data Mining[C]//Proc.of the 5th Int'l Conf.on Extending Database Technology.Avignon,France:[s.n.],1996.
  • 3Clinkenbeard R A,Xin Feng.An Unsupervised Learning and Fuzzy Approach for Software Category Identification and Capacity Planning[J].IEEE Neural Networks,1992,3(7):358.
  • 4郭志懋,周傲英.数据质量和数据清洗研究综述[J].软件学报,2002,13(11):2076-2082. 被引量:268
  • 5Shafer J,Agrawal R,Mehta M.SPRINT:A Scalable Parallel Classifier for Data Mining[C]//Proc of the 22nd VLDB Conference.Mumbai,India:[s.n.],1996:544-555.

二级参考文献24

  • 1Aebi, D., Perrochon, L. Towards improving data quality. In: Sarda, N.L., ed. Proceedings of the International Conference on Information Systems and Management of Data. Delhi, 1993. 273~281.
  • 2Wang, R.Y., Kon, H.B., Madnick, S.E. Data quality requirements analysis and modeling. In: Proceedings of the 9th International Conference on Data Engineering. Vienna: IEEE Computer Society, 1993. 670~677.
  • 3Rahm, E., Do, H.H. Data cleaning: problems and current approaches. IEEE Data Engineering Bulletin, 2000,23(4):3~13.
  • 4Galhardas, H., Florescu, D., Shasha, D., et al. AJAX: an extensible data cleaning tool. In: Chen, W.D., Naughton, J.F., Bernstein, P.A., eds. Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. Texas: ACM, 2000. 590.
  • 5Hernandez, M.A., Stolfo, S.J. Real-World data is dirty: data cleansing and the merge/purge problem. Data Mining and Knowledge Discovery, 1998,2(1):9~37.
  • 6Lee, M.L., Ling, T.W., Lu, H.J., et al. Cleansing data for mining and warehousing. In: Bench-Capon, T., Soda, G., Tjoa, A.M., eds. Database and Expert Systems Applications. Florence: Springer, 1999. 751~760.
  • 7Monge, A.E. Matching algorithm within a duplicate detection system. IEEE Data Engineering Bulletin, 2000,23(4):14~20.
  • 8Monge, A.E., Elkan, C. The field matching problem: algorithms and applications. In: Simoudis, E., Han, J.W., Fayyad, U., eds. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. Oregon: AAAI Press, 1996. 267~270.
  • 9Savasere, A., Omiecinski, E., Navathe, S.B. An efficient algorithm for mining association rules in large databases. In: Dayal, U., Gray, P., Nishio, S., eds. Proceedings of the 21st International Conference on Very Large Data Bases. Zurich: Morgan Kaufmann, 1995. 432~444.
  • 10Srikant, R., Agrawal, R. Mining Generalized Association Rules. In: Dayal, U., Gray, P., Nishio, S., eds. Proceedings of the 21st International Conference on Very Large Data Bases. Zurich: Morgan Kaufmann, 1995. 407~419.

共引文献307

同被引文献30

引证文献6

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部