期刊文献+

求解柔性作业调度的共生进化算法 被引量:1

Improved Evolutionary Algorithm for Job Flexibility Schedule
下载PDF
导出
摘要 在柔性作业处理系统中,运行操作的机器、操作运行顺序及完成特定加工的操作集等均可含有柔性,作业调度的最优性依赖流程设计的结果。该文在共生遗传算法求解此问题的基础上,定义了一种新的适应度函数,将个体所参与的所有组合解的算术平均值作为此个体的适应度。引进较优的遗传交叉方法。仿真结果证明,新的适应度函数表现优异,对给定的复杂调度问题得到了更好的解。 Process planning and job-shop schedule are closely related with each other in flexible manufacturing system. The optimality of job-shop scheduling depends on the result of process planning. Symbiotic evolutionary algorithm is used to deal with this problem usually. This paper presents a new definition of individual's fitness to improve the performance of the algorithm. Simulation results demonstrate the effectiveness of the proposed definition, whose optimization performance is markedly superior to those in the literature and can get much better solutions and cost less time. A new genetic operation is also introduced. Experimental results also indicate the method efficiently improves the performance of the symbiotic evolutionary algorithm.
出处 《计算机工程》 CAS CSCD 北大核心 2008年第1期204-206,共3页 Computer Engineering
关键词 作业调度 适应度函数 柔性 共生进化算法 job shop schedule fitness function flexibility evolutionary algorithm
  • 相关文献

参考文献5

  • 1Kim Y K,Park K,Ko J.A Symbiotic Evolutionary Algorithm for the Integration of Process Planning and Job Shop Scheduling[J].Computers and Operations Research,2003,30(8):1151-1171.
  • 2Beatrice M O,Mario V.Local Search Genetic Algorithms for the Job Shop Scheduling Problem[J].Applied Intelligence,2004,21(1):99-109.
  • 3Takeshi Yamada,Ryohei Nakano.Genetic Algorithms for Job-shop Scheduling Problems[C]//Proc of Modern Heuristic for Decision Support.[S.l.]:ACM Press,1997:67-81.
  • 4Croce F D,Tadei R,Volta G.A Genetic Algorithm for the Job Shop Problem[J].Computers and Operations Research,1995,22(1):15-24.
  • 5Kim Y K,Park K.A Set of Data for the Integration of Process Planning and Job Shop Scheduling[EB/OL].(2003-11-24).http://wyslab.chonnam.ac.kr/liins/data-pp&s.doc.

同被引文献14

  • 1吴宏晓,侯志俭.共生进化免疫神经网络在电力系统短期负荷预测中的应用[J].华东电力,2004,32(12):11-14. 被引量:3
  • 2刘益剑,方彦军,孙冀,张建明.简化E.Coli觅食优化算法及其在非线性模型参数辨识中的应用[J].控制理论与应用,2007,24(6):991-994. 被引量:2
  • 3Shin S,Kyoung P,Keun J O,et al.Multi-objective FMS Process Planning with Various Flexibilities Using a Symbiotic Evolutionary Algorithm[J].Computers&Operations Research,2011,38(3):702-712.
  • 4Kim Y K,Kim J Y,Shin K S.An Asymmetric Multileveled Symbiotic Evolutionary Algorithm for Integrated FMS Scheduling[J].Journal of Intelligent Manufacturing,2007,18(6):631-645.
  • 5Zhang Peng,Liu Hong,Ding Yanhui.Dynamic Bee Colony Algorithm Based on Multi-species Co-evolution[J].Applied Intelligence,2014,40(3):427-440.
  • 6Fister I,Strnad D,Yang Xinshe,et al.Adaptation and Hybridization in Nature-inspired Algorithms[J].Adaptation Learning&Optimization,2015,18(10):3-50.
  • 7Shin K S,Jeong Y S,Jeong M K.A Two-leveled Symbiotic Evolutionary Algorithm for Clustering Problems[J].Applied Intelligence,2012,36(4):788-799.
  • 8Beatrice M O,Mario V.Local Search Genetic Algorithms for the Job Shop Scheduling Problem[J].Applied Intelligence,2004,21(1):99-109.
  • 9Moon I,Bae S L H.Genetic Algorithms for Job Shop Scheduling Problems with Alternative Routings[J].International Journal of Production Research,2008,46(10):2695-2705.
  • 10Giovanni L D,Pezzella F.An Improved Genetic Algorithm for the Distributed and Flexible Job-shop Scheduling Problem[J].European Journal of Opera-tional Research,2010,200(2):395-408.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部