期刊文献+

Liénard型方程周期边值问题解的存在唯一性

UNIQUE EXISTENCE OF SOLUTION TO BOUNDARY VALUE PROBLEM OF LI(?)NARD TYPE EQUATIONS
原文传递
导出
摘要 给出了下列方程u″(t)+f(u,t)u′(t)+g(u,t)=e(t)边值问题周期解的存在唯一性问题的一些新的判定条件. In this paper the unique solvability of the periodic solution to the following boundary value problem u″(t)+f(u,t)U′(t)+g(u,t)=e(t) with suitable periodic boundary conditions is considered.
出处 《系统科学与数学》 CSCD 北大核心 2008年第1期9-15,共7页 Journal of Systems Science and Mathematical Sciences
关键词 整体反函数定理 LIENARD型方程 周期解 存在唯一性 Global inverse function theorem LiSnard type equation periodic solution unique existence
  • 相关文献

参考文献12

  • 1Brown K J and Lin S S. Periodically perturbed conservative systems and a globle inverse function theorem. Nonlinear Anal., 1980, 4(1): 193-201.
  • 2Cheng W W. Generalized upper and low solution method for the forced Duffing equation. Proc. Amer. Math. Soc., 1997, 125(2): 397-406.
  • 3Ding T, Iannacci B and Zanolin F. Existence and multiplicity results for periodic solution of semilinear Duffing equation. J. Diff. Equs., 1993, 105: 364-409.
  • 4Lazer A C and Mckenna P J. On the existence of stable periodic solution of differential equation of Duffing type. Pro. Amer. Math. Soc., 1990, 110(1): 125-133.
  • 5Li W G and Shen Z H. The constructive proof for the existence of the periodic solutions of the Duffing equation. Chinese Sci. Bull, 1997, 42: 1591-1594.
  • 6Mawhin J. Topological Degree Methods in Nonlinear Boundary Value Problems. CBMS-Regional Conf. Math. No. 40, Amer. Math. Soc., Providence, RI, 1979.
  • 7Mawhin J and Ward J R. Nonuniform nonresonance conditions at the two first eigenvalue for periodic solution of forced Lienard and Duffing equations. Rocky Mountain J. Math., 1982, 12(4): 643-654.
  • 8Reissig R. Contractive Mapping and Periodic Perturbed Nonconsevative system, Nonlinear Differential Equation of High Order. Groningen: Norrdhoff Leyden, 1974, 73-87.
  • 9Wang Z H. Periodic solutions of Lienard differential equations with subquadratic potential conditions. J. Math. Anal. Appl., 2001, 256: 127-141.
  • 10李树杰,冯德兴.共振下一类常微分方程组周期解的唯一存在性.系统科学与数学,1986,6:241-246.

二级参考文献13

  • 1LiuBing,YuJianshe.BOUNDARY VALUE PROBLEM FOR A GENERALIZED LINARD EQUATION[J].Applied Mathematics(A Journal of Chinese Universities),2002,17(1):31-38. 被引量:2
  • 2黄立宏,庾建设.广义Liénard方程非平凡周期解的存在性[J].应用数学,1995,8(2):172-176. 被引量:10
  • 3Omari P, Ye W Y. Periodic solutions of a second order ordinary differential equation with an effectire damping[J]. Funkcialaj Ekvacioj, 1995, 38: 71-80.
  • 4Habets P, Sanchez L. Periodic solutions of some Lienard equations with singularities[J]. Proc Amer Math Soc, 1990, 109: 1035-1044.
  • 5Mawhin J. Topological degree and boundary value problems for nonlinear differential equations[A]. P.M. Fitzpertrick, M. Martelli, J. Mawbin, et al. Topological Methods for Ordinary Differential Equations[C]. Lecture Notos in Mathematics, Vol. 1537, Springer-Verlag, New York, Berlin, 1991.
  • 6Gupta C P, Nieto J J, Sanchez L. Periodic solutions of some Lienard and Duffing equations[J]. J Math Anal Appl, 1989, 140: 67-82.
  • 7Zheng Zho-Huan. Periodic solution of generlized Lienard equations[J]. J Math Anal Appl, 1990, 148:1-10.
  • 8Ponzo P J, Wax N. Periodic solutions of generalized Lienard equations[J]. J Math Anal Appl, 1984,104: 117-127.
  • 9Coddington E A, Levinson N. Theory of Ordinary Differential Equations[M]. International series in pure and applied. New York: McGraw-Hill, 1995.
  • 10Brown K J, Lin S S. Periodically perturbed conservative systems and a global inverse function theorem[J]. Nonllinear Analysis, Theory, Methods & Applications. 1980, 4(1): 193-201.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部