期刊文献+

基于矩形方向窗的小波域去噪方法 被引量:4

Method of wavelet domain denoising based on directional rectangle window
下载PDF
导出
摘要 根据小波变换的特点,提出了一种新的局部邻域窗口选择方法——基于方向性的矩形窗口选择方法。对同一尺度不同子带选用不同方向的矩形窗口,并且不同尺度下窗口的大小也不同;对于多方向性的图像,使用双树复小波变换取代传统的离散小波变换。实验结果表明,将其应用于图像去噪,简单有效,并且可得到更高的峰值信噪比和更好的视觉效果。 According to the features of the wavelet transform, a new method of choosing the local neighborhood was proposed. For the three subbands of the same scale, we chose rectangle windows of different directions, and the size of the rectangle windows for different scales is also different. For the multidirectional images, Dual-Tree Complex Wavelet Transform (DTCWT) was employed instead of the traditional Discrete Wavelet Transform( DWT). The experimental results indicate that the method of choosing directional rectangle windows is simple and effective, and high PSNR and good visual quality can be obtained from this method.
出处 《计算机应用》 CSCD 北大核心 2008年第2期452-454,459,共4页 journal of Computer Applications
基金 教育部留学启动基金资助项目(2004.176.4) 山东省自然科学基金资助项目(2004G01,2004ZRC03016)
关键词 图像去噪 小波变换 双树复小波变换 矩形方向窗 image denoising Wavelet Transform(WT) Dual-Tree Complex Wavelet Transform(DTCWT) directional rectangle window
  • 相关文献

参考文献11

  • 1谢杰成,张大力,徐文立.小波图象去噪综述[J].中国图象图形学报(A辑),2002,7(3):209-217. 被引量:254
  • 2LOPRESTO S,RAMCHANDRAN K,ORCHARD M T.Image coding based on mixture modeling of wavelet coefficients and a fast estimation-quantization framework[C]// Proceeding IEEE Data Compression Conference.New York:IEEE,1997:221-230.
  • 3MIHCAK M K,KOZINTSEV I,RAMCHANDRAN K.Spatially adaptive statistical modeling of wavelet image coefficients and its application to denoising[C]// IEEE International Conference on Acoustics,Speech,and Signal Processing.Washington,DC:IEEE Computer Society,1999:3253-3256.
  • 4MIHCAK M K,KOZINTSEV I,RAMCHANDRAN K.Low-complexity image denoising based on statistical modeling of wavelet coefficients[J].IEEE Signal Processing Letters,1999,6(12):300-303.
  • 5鞠啸东,郑世宝.估计小波系数方差邻域大小的研究[J].红外与激光工程,2003,32(4):407-411. 被引量:4
  • 6EOM I K,KIM Y S.Wavelet-based denoising with nearly arbitrarily shaped Windows[J].IEEE Signal Processing Letters,2004,11(12):937-940.
  • 7KINGSBURY N.The dual-tree complex wavelet transform:a new efficient tool for image restoration and enhancement[C]// Proceeding EUSIPCO 98.Greek:EVRASIP,1998:319-322.
  • 8KINGSBURY N.Image processing with complex wavelets[J].Philosophical Transactions:Mathematical,Physical and Engineering Sciences,1999,357(1760):2543-2560.
  • 9CHANG S G,YU B,VETTERLI M.Spatially adaptive wavelet thresholding with context modeling for image denoising[C]// Submitted to IEEE Transations on Image Processin,Chicago,USA:IEEE.1998:535-539.
  • 10ROMBERG J K,CHOI H,BARANIUK R.Bayesian tree-structured image modeling using wavelet domain hidden Markov model[J].IEEE Transactions on Image Processing,2001,10(7):1056-1068.

二级参考文献72

  • 1[9]You Yuli, Kaveh D. Fourth-order partial differential equations for noise removal[J]. IEEE Trans. Image Processing, 2000,9(10):1723~1730.
  • 2[10]Bouman C, Sauer K. A generalized Gaussian image model of edge preserving map estimation[J]. IEEE Trans. Image Processing, 1993,2(3):296~310.
  • 3[11]Ching P C, So H C, Wu S Q. On wavelet denoising and its applications to time delay estimation[J]. IEEE Trans. Signal Processing,1999,47(10):2879~2882.
  • 4[12]Deng Liping, Harris J G. Wavelet denoising of chirp-like signals in the Fourier domain[A]. In:Proceedings of the IEEE International Symposium on Circuits and Systems[C]. Orlando USA, 1999:Ⅲ-540-Ⅲ-543.
  • 5[13]Gunawan D. Denoising images using wavelet transform[A]. In:Proceedings of the IEEE Pacific Rim Conference on Communications, Computers and Signal Processing[C]. Victoria BC,USA, 1999:83~85.
  • 6[14]Baraniuk R G. Wavelet soft-thresholding of time-frequency representations[A]. In:Proceedings of IEEE International Conference on Image Processing[C]. Texas USA,1994:71~74.
  • 7[15]Lun D P K, Hsung T C. Image denoising using wavelet transform modulus sum[A]. In:Proceedings of the 4th International Conference on Signal Processing[C]. Beijing China,1998:1113~1116.
  • 8[16]Hsung T C, Chan T C L, Lun D P K et al. Embedded singularity detection zerotree wavelet coding[A].In:Proceedings of IEEE International Conference on Image Processing[C]. Kobe Japan, 1999:274~278.
  • 9[17]Krishnan S, Rangayyan R M. Denoising knee joint vibration signals using adaptive time-frequency representations[A]. In:Proceedings of IEEE Canadian Conference on Electrical and Computer Engineering 'Engineering Solutions for the Next Millennium[C]. Alberta Canada, 1999:1495~1500.
  • 10[18]Liu Bin, Wang Yuanyuan, Wang Weiqi. Spectrogram enhancement algorithm: A soft thresholding-based approach[J]. Ultrasound in Medical and Biology, 1999,25(5):839~846.

共引文献256

同被引文献62

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部