期刊文献+

遥感分类信息不确定性的可视化表达方法 被引量:9

Visualizing Uncertainty in Classified Remote Sensing Images
下载PDF
导出
摘要 影像分类是遥感技术的重要应用领域之一,而遥感分类信息中则存在着不确定性,如果仅仅对其进行不确定性程度上的数学度量,而忽略其在空间域和时间域上的分布特征,则很难完整准确地描述和理解遥感信息中的不确定性。从视觉感知角度表现不确定性信息是不确定性建模的重要组成部分,而利用现有的计算机可视化技术来表达遥感分类信息的不确定性则是一种直观有效的方法,可以帮助用户更加完整地理解遥感数据及其分类信息中不确定性的大小、分布、空间结构和趋势。我们将不确定性可视化技术分为静态可视化变量、动态可视化变量和特征可视化三种类型。并以我国黄河三角洲地区的Landsat 5 TM遥感影像的分类数据为例,对上述不确定性可视化技术进行讨论及分析。 The inherent uncertainties in the real world and the limitation of human cognition are the primary factors of the abundance of uncertainty existing in the judgment of sciences to objectivities. An amount of uncertainties exist in the spatial data describing the spatial entity, including temporal-relative location data and attribute data, some of which may seriously distort the reliability of products. The remotely sensed imagery contains uncertainties caused by unexpected factors during the acquiring process. If only measuring the degree of uncertainty but ignoring the spatial-temporal distribution features, it is not easy to describe accurately and completely the uncertainty in remote sensing information. Representing uncertainty information from the point of view of visual sensation is one of the important sections of modeling uncertainty. The uncertainty visualizing techniques will help users to explore uncertainty in raw data and size, distribution, special structure and tendency of uncertainty. Using existing computer visualization technologies to express uncertainties is an intuitive and effective way. In this paper, these visualization techniques include three types of visualization: static visualization, dynamic visualization and feature visualization. Based on the Landsat-5 TM remote sensing image covering the Chinese Yellow River delta area and its classified data, we investigated several techniques discussed above.
作者 葛咏 李三平
出处 《地球信息科学》 CSCD 2008年第1期88-96,共9页 Geo-information Science
基金 国家自然科学基金项目(40671136) 中科院前沿创新研究项目(V36400) 遥感国家重点实验室开放基金(LRSS0610)
关键词 遥感 分类 不确定性 可视化表达 remote sensing image classification uncertainty visualization
  • 相关文献

参考文献28

  • 1柏延臣,王劲峰.遥感数据专题分类不确定性评价研究:进展、问题与展望[J].地球科学进展,2005,20(11):1218-1225. 被引量:30
  • 2Lucieer A, Kraak M J. Interactive and visual fuzzy classification of remotely sensed imagery for exploration of uncertainty. International Journal of Geographical Information Science, 2004, 18(5): 491 -512.
  • 3Carlo W D. Exploring multi-dimensional remote sensing data with a virtual reality system. Geographical & Environmental Modelling, 2000, 4 ( 1 ) : 7 - 20.
  • 4葛咏,王劲峰,梁怡,马江洪.遥感信息不确定性研究[J].遥感学报,2004,8(4):339-348. 被引量:13
  • 5Foody G M. Approaches for the production and evaluation of fuzzy land cover classifications from remotely-sensed data. International Journal of Remote Sensing, 1996, 17 (7): 1317 -1340.
  • 6Maselli F, Conese C, Petkov L. Use of probability entropy for the estimation and graphical representation of the accuracy of maximum likelihood classifications. ISPRS Journal of Photogrammetry and Remote Sensing, 1994, 49 ( 2 ) : 13 - 20.
  • 7F J M van der Wel, L C van der Gaag, B G H Gone. Visual exploration of uncertainty in remote-sensing classification. Computers & Geosciences, 1998, 24 (4) : 333- 341.
  • 8曹旭晨,赵颖,方志沂,郎义方.计算机图像处理对提高乳腺X线诊断率及乳腺癌早诊的研究[J].中国肿瘤临床,1999,26(4):286-289. 被引量:7
  • 9Goodchild M F, Buttenfield B, Wood J. On introduction to visualizing data validity. In: H Hearnshaw & D Unwin (eds). Visualization in Geographical Information Systems. Wiley, 1994, 141- 149.
  • 10Rhodes P J, Laramee R S, Beregeron D R Sparr T M. Uncertainty visualization methods in isosurface rendering. EUROGRAPHICS 2003 Short Papers, September 1 -5, 2003, Granada, Spain. 83- 88.

二级参考文献81

  • 1胡煜升,周燕发.乳腺肿瘤误诊原因分析[J].临床放射学杂志,1989,8(5):311-312. 被引量:2
  • 2牛昀,范宇,傅西林.隐性乳腺癌的全乳腺次连续大切片检查[J].中华肿瘤杂志,1995,17(4):298-300. 被引量:34
  • 3李三平,葛咏,李德玉,王劲峰.遥感信息不确定性度量[J].山西大学学报(自然科学版),2006,29(1):30-32. 被引量:5
  • 4Von H Otto VH 等.小乳腺癌的X线诊断[J].放射学实践,1988,3(1):23-28.
  • 5李树玲 李云英 等.T0乳腺癌74例(77例次)检诊经验[J].中国肿瘤临床,1988,15(3):136-140.
  • 6[1]Arbia G, Griffith D, Haining R. Error Propagation Modeling in Raster GIS: Adding and Rationing Operations [ J]. Cartography and Geographic Information Science, 1999, 26(4): 297-315.
  • 7[2]Cannel Y, Dean D J, Flather C H. Combining location and classification error sources for estimating multi-temporal database accuracy[ J].PE&RS, 2001,67(7): 865-872.
  • 8[3]Chrisman N R. The error component in spatial data, Chapter 12 in Maguire, D. J. , Goodchild M. F. and Rhind, D. W. (editors)Geographical Information Systems: Overview Principles and Applications, Longmans, New York. 1991,165-174.
  • 9[4]Clarke K C; Teague P D. Representation of cartographic uncertainty using virtual environments, Proceeding 4th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, Netherlands, 2000,109- 116.
  • 10[5]Congalton R G, Green K. Assessing the Accuracy of Remotely Sensed Data: Principle and Practices[M]. Lewis Publishers. 1999.

共引文献52

同被引文献127

引证文献9

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部