期刊文献+

一类三自由度碰撞振动系统的Poincaré映射的对称性,分岔及混沌 被引量:4

Symmetry Bifurcation and Chaos of the Poincaré Map,in a Three-degree-of-freedom Vibro-impact System
下载PDF
导出
摘要 考虑了一类具有对称刚性约束的三自由度碰撞振动系统。建立了系统的Poincaré映射,并导出了Poincaré映射的对称性。把映射不动点的稳定性与分岔理论应用于该系统,分析表明Poincaré映射的对称性完全抑制了对称周期n-2运动的周期倍化分岔,Hopf-flip分岔和pitchfork-flip分岔,并证明了两个反对称的周期n-2运动具有相同的稳定性。数值模拟得到了对称周期n-2运动的音叉分岔,Hopf分岔和Hopf-Hopf分岔。此外,通过Poincaré截面投影相图的形式研究了由音叉分岔通向混沌的路径。 A three-degree-of-freedom vibro-impact system with symmetric constraining stops is considered. The Poincaré map of the system is established, and the symmetry of the Poincaré map is derived in detail. The theory of bifurcation of fixed points is applied to such model, and it is shown that the symmetry of the Poincaré map suppres- ses codimension-1 period-doubling bifurcation, Hopf-flip bifurcation and pitchfork-flip bifurcation of symmetric period n - 2 motions. It is also proved that both the two antisymmetric period n - 2 motions have the same stability. By numerical simulations, pitchfork bifurcation, Hopf bifurcation and Hopf-Hopf bifurcation of symmetric period n - 2 motions are represented. Besides, the routes to chaos after pitchfork bifurcation are studied in the forms of the phase portrait in the projected Poincaré section.
作者 乐源 谢建华
出处 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2008年第1期27-31,共5页 Journal of Sichuan University (Engineering Science Edition)
基金 国家自然科学基金资助项目(1047209610772151) 西南交通大学博士创新基金资助项目
关键词 碰撞振动系统 对称周期n-2运动 Poinearé映射 分岔 混沌 vibro-impact system symmetric period n - 2 motion Poincaré map bifurcation chaos
  • 相关文献

参考文献18

  • 1Holmes P J.The dynamics of repeated impacts with a sinusoidally vibrating table[J].Journal of Sound and Vibration,1982,84 (2):173-189.
  • 2Shaw S W,Holmes P J.Periodically forced linear oscillator with impacts:Chaos and Long-Period Motions[J].Physical Review Letters,1989,51 (8):623-626.
  • 3Whiston G S.Singularities in vibro-impact dynamics[J].Journal of Sound and Vibration,1992,152 (3):427-460.
  • 4Han R P S,Luo A C J,Deng W.Chaotic motion of a horizontal impact pair[J].Journal of Sound and Vibration,1995,181 (2):231-250.
  • 5Budd C,Dux F.The effect of frequency and clearance vibrations on single-degree-of-freedom impact oscillators[J].Journal of Sound and Vibration,1995,184 (3):475-502.
  • 6Shaw S W.The dynamics of a harmonically excited system having rigid amplitude constraints,Part 1:Subharmonic motions and local bifurcations[J].Journal of Applied Mechanics,1985,52:453-458.
  • 7Shaw S W.The dynamics of a harmonically excited system having rigid amplitude constraints,Part 2:Chaotic motions and global bifurcations[J].Journal of Applied Mechanics,1985,52:459-464.
  • 8张彦梅,陆启韶,李群宏.一类双自由度碰振系统的亚谐周期运动存在性[J].动力学与控制学报,2003,1(1):29-34. 被引量:5
  • 9Luo Guanwei.Period-doubling bifurcations and routes to chaos of the vibratory systems contacting stops[J].Physics Letters A,2004,323:210-217.
  • 10Luo Guanwei,Xie Jianhua.Hopf bifurcation of a two-degree-of-freedom vibro-impact system[J].Journal of Sound and Vibration,1998,213 (3):391-408.

二级参考文献26

  • 1[1]Hsu CS.An unraveling algorithm for global analysis of dynamical systems-an application of cell-to-cell mapping.J Appl Mech,1980,47:940~948
  • 2[2]Shaw SW,Homes PJ.A periodically forced impact oscillator with large dissipation.J Appl Mech,1983,50:849~857
  • 3[3]Shaw SW.The dynamics of a harmonically excited system having rigid amplitude constraints (Parts Ⅰ and Ⅱ).J Appl Mech,1985,52:453~464
  • 4[4]Whiston GS.Global dynamics of a vibro-impacting linear oscillator.J Sound and Vibration,1987,118(3):395~424
  • 5[5]Whiston GS.The vibro-impact response of a harmonically excited and preloaded one-dimensional linear oscillator.J Sound and Vibration,1987,115(2):303~319
  • 6[6]Nordmark AB.Non-periodic motion caused by grazing incidence in an impact oscillator.J Sound and Vibration,1991,145(2):279~297
  • 7[7]Nordmark AB.Effects due to low velocity in mechanical oscillators.Int J of Bifur and Choas,1992,2(3):597~605
  • 8[8]Nordmark AB.A universal limit mapping in grazing bifurcations.Phys Rev E,1997,55:266~270
  • 9[9]Ivanov AP.Stabilization of an impact oscillator near grazing incidence owing to resonance.J Sound and Vibration,1993,162(3):562~565
  • 10[10]Aidanpaa JO,Gupta RB.Periodic and chaotic behaviour of a threshold-limited two-degree-of-freedom system.J Sound and Vibration,1993,165(2):305~327

共引文献11

同被引文献27

引证文献4

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部