期刊文献+

基于WOWA-FCM的复合攻击检测模型

A Detection Model for Multi-stage Attacks Based on WOWA-FCM
下载PDF
导出
摘要 为有效处理复合攻击检测中的诸多不确定性及复杂性因素,提出了基于WOWA-FCM的复合攻击检测模型。WOWA-FCM检测模型从攻击意图分析的角度,利用模糊认知图(Fuzzy Cognitive Maps,FCM)对初级入侵警报进行因果关联;并结合脆弱性知识与系统配置信息,利用WOWA(Weighted Ordered Weighted Averaging)算子融合关联数据。WOWA-FCM检测模型不仅能识别复合攻击各个阶段、构建完整的攻击视图,并且能动态地评判攻击进度和目标系统的安全状态。WOWA-FCM模型简化了传统的复合攻击检测过程,并具有较强的适应性。MstreamDDoS攻击检测实验证明了方法的有效性。 In order to handle the uncertainties and complexities of multi-stage attack detection effectively, a novel detection model for multi-stage attacks based on Weighted Ordered Weighted Averaging (WOWA) and Fuzzy Cognitive Maps (FCM) was proposed. Based on Attack Intention Analysis, the WOWA-FCM detection model implemented the Cause-Effect correlation of the primary intrusion alerts along with the vulnerability and configuration information of the target system utilizing Fuzzy Cognitive Maps, and implemented the effects fusion via WOWA aggregation operators. The WOWA-FCM approach was not only able to recognize the individual stages of a multi-stage attack, construct the whole attack scenario, but also able to evaluate the global attack process and the security states of the target system dynamically. The WOWA-FCM model simplified the conventional multi-stage attack detection process, and provided with a better adaptability. The effectiveness of this approach was verified by the Mstream DDoS detection experimental results.
出处 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2008年第1期122-126,共5页 Journal of Sichuan University (Engineering Science Edition)
基金 国家自然科学基金资助项目(60573036) 航空基础科学基金资助项目(03F31007)
关键词 复合攻击 模糊认知图 入侵检测 WOWA算子 警报关联 multi-stage attack Fuzzy Cognitive Maps(FCM) intrusion detection Weighted Ordered Weighted Averaging operator(WOWA) alert correlation
  • 相关文献

参考文献10

  • 1Huang M Y,Wicks T M.A large-scale distributed intrusion detection framework based on attack strategy analysis[J].Computer Networks,1999,31(23-24):2465-2475.
  • 2Cuppens F,Miege A.Alert correlation in a cooperative intrusion detection framework[C]//IEEE Symposium on Research in Security and Privacy.Oakland,USA:IEEE Computer Society,2002:187-200.
  • 3Ning P,Cui Y,Reeves D S.Constructing attack scenarios through correlation of intrusion alerts[C]//Proceedings of the 9th ACM Conference on Computer & Communications Security.Washington,USA:ACM Press,2002:245-254.
  • 4Kosko B.Fuzzy engineering[M].New Jersey,USA:Prentice-Hall,1997.
  • 5Aguilar J.A survey about fuzzy cognitive maps papers[J].International Journal of Computational Cognition,2005,3(2):27-33.
  • 6Carver C A,Hill J M D,Pooch U W.Limiting uncertainty in intrusion response[C]//Proceedings of the 2nd IEEE Workshop on Information Assurance and Security.New York,USA:IEEE Computer Society,2001:142-147.
  • 7Kruegel C,Valeur F,Vigna G.Intrusion detection and correlation:challenges and solutions[M].New York,USA:Springer-Verlag,2005.
  • 8Torra V.The weighted OWA operator[J].International Journal of Intelligent Systems,1997,2(12):153-166.
  • 9Calvo T,Mesiar R,Yager R R.Quantitative weights and aggregation[J].IEEE Transactions on Fuzzy Systems,2004,12(1):62-69.
  • 10MIT Lincoln Laboratory.2000 DARPA intrusion detection scenario specific data sets[EB/OL].http://www.ll.mit.edu/IST/ideval/data/2000/2000_data_index.html.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部