期刊文献+

高压密相气力输送固相流量的实验与GRNN网络预测 被引量:1

Experimental Study of High-pressure Dense-phase and Pneumatically Transported Solid-phase Flow and its Prediction Based on a GRNN(generalized regression neural network)
下载PDF
导出
摘要 煤粉高压密相气力输送是气流床加压气化的关键技术之一。在输送压力可达3.7MPa,管路固气比可达660kg/m3的气力输送实验台上进行系统的研究,考察输送压力、输送差压、流化风量、充压风量、补充风量、煤粉含水率等条件对固相质量流量的影响。结果表明:固相流量随着输送差压的增大而增大;随着流化风量的增大而先增大后趋向于某一定值;注入风量一定时,随着充压风量的增大而先减小后增大;与补充风量的大小基本无关;随着煤粉含水率的增大而减小。同时建立广义回归神经网络(GRNN)对固相流量进行了有效预测,最大预测误差在2.3%以内。上述工作将为系统的控制和运行提供一定的指导,同时为深化高压密相气力输送的研究奠定基础。 Pulverized-coal high-pressure dense-phase pneumatic transmission represents one of the key technologies for the pressurized coal gasification of a gas fluidized bed.A systematic study was performed on a pneumatic transmission test rig featuring a transmission pressure up to 3.7 MPa and a pipeline solid-gas ratio of 660 kgm3 to investigate the influence of such conditions as transmission pressure,transmission pressure difference,fluidized air quantity,pressurized air quantity,supplementary air quantity and water content of pulverized coal etc.on the solid-phase mass flow rate.The results of the study show that the solid-phase flow rate increases with the increase of transmission pressure difference.It first increases with an increase in fluidized air flow rate,and then tends to be a constant value.When the injected air quantity reaches a constant one,the flow rate in question will first decrease and then increase with the increase of the pressurized air quantity,basically independent of the supplementary air quantity.The flow rate will decrease with an increase of the water content of the pulverized coal.In the meantime,a generalized regression neural network(GRNN)was established to effectively forecast the solid-phase flow rate with the maximal prediction error being within 2.3%.All these efforts will somewhat provide guidance for system control and operation,and at the same time lay a solid foundation for an in-depth study of the high pressure dense-phase pneumatic transmission.
出处 《热能动力工程》 EI CAS CSCD 北大核心 2008年第1期41-45,共5页 Journal of Engineering for Thermal Energy and Power
基金 国家重点基础研究发展计划基金资助项目(2004CB217702)
关键词 气力输送 高压 密相 固相流量 广义回归神经 网络 pneumatic conveyance,high pressure,dense phase,solid phase flow rate,generalized regression neural network
  • 相关文献

参考文献3

二级参考文献15

  • 1伏建芳.高中政治学科核心素养的培养[J].课程教育研究,2020(33):35-36. 被引量:3
  • 2国家电力公司热工研究院.两段式干煤粉气化炉[P].专利号01240407.1(No.01240407.1)..
  • 3徐越.干煤粉加压气化技术报告之六[R].西安:热工研究院,TPRI/T8-RA-006-2002,2002.6.
  • 4壳牌国际石油产品公司 电力工业部华北电力设计院 电力工业部热工研究院.中国IGCC电站项目初步可行性研究报告[R].北京:华北电力设计院,1997.12.
  • 5Merrick D. Mathematical models of the thermal decomposition of coal[J]. FUEL, 1983, 62(5): 534-539.
  • 6Norman J. Modelling the formation and emission of environmentally unfriendly coal species in some gasification processes[J]. FUEL, 1997,76: 1201-1216.
  • 7Vamvuka D, Woodbum E T. Senior, Modeling of an entrained flow coal gasifier, 1.Development of the model and general predicition[J]. FUEL,1995, 74: 1452-1465.
  • 8Zuideveld Piet,De Graaf Jan.Overview of global solutions' world wide gasification developments//Gasification Technologies Council.Gasification Technologies 2003.San Francisco,California,2003:1-7.
  • 9Zheng Ligang,Edward Furinsky.Comparison of Shell,Texaco,BGL and KRW gasifiers as part of IGCC plant computer simulations.Energy Conversion and Management,2005,46(11/12):1767-1779.
  • 10Konrad K.Dense-phase pneumatic conveying:a review.Powder Technology,1986,49:1-35.

共引文献148

同被引文献7

  • 1周昊,郑立刚,樊建人,岑可法.广义回归神经网络在煤灰熔点预测中的应用[J].浙江大学学报(工学版),2004,38(11):1479-1482. 被引量:31
  • 2Haykin S.神经网络原理[M].叶世伟,史忠植,译.第二版.北京:机械工业出版社,2004.
  • 3Moody J,Darken C.Fast Learning in Networks of Locally-tuned Processing Units[J].Neural Computation,1989,1(2):281-294.
  • 4Powell M J D.Radial Basis Function for Multivariable Interpolation[C]//.A review,IMA Conference on Algorithms for the Approximation of Functions and Data.England,1985.
  • 5Broomhead D S,Lowe D.Multivariable Functional Interpolation and Adaptive Networks[J].Complex Systems,1988,2(2):321-355.
  • 6Poggio T,Girosi F.Regularization Algorithms for Learning that are Equivalent to Multilayer Networks[J].Science,1990,127:978-982.
  • 7Sprecht D F.A General Regression Neural Network[J].IEEE Trans Neural Networks,1991,2(6):568-576.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部