期刊文献+

半正定(半负定)二元函数基于g-期望的Jensen不等式 被引量:1

Jensen′s Inequality for g-expectation on Semi-positive Definite(Semi-negative Definite) Bivariate Function
原文传递
导出
摘要 彭实戈通过倒向随机微分方程引入了g-期望的概念.在关于g-期望的最基本的条件下,提出并证明了:半正定(半负定)二元函数基于g-期望的Jensen不等式在非空数集S上成立当且仅当生成元g在S上是超线性(次线性)的. Peng S G. introduced the notion of g-expectation by backward stochastic differential equation. Under the most elementary conditions with respect to g-expectation, this paper puts forword and proves that Jensen's inequality for g-expectation on semi-positive definite (resp. semi-negatlve definite) bivariate function holds on nonempty real sets S if and only if the generator g is super-linear (resp. sub-linear) on S.
出处 《数学的实践与认识》 CSCD 北大核心 2008年第3期80-89,共10页 Mathematics in Practice and Theory
基金 国家自然科学基金(10671205) 中国矿业大学青年科技基金(2006A041)
关键词 倒向随机微分方程 JENSEN不等式 G-期望 条件G-期望 比较定理 backward stochastic differential equation Jensen's inequality g-expectation conditional g-expectation comparison theorem
  • 相关文献

参考文献2

二级参考文献15

  • 1[1]Peng S. BSDE and related g-expectations[A]. El Karoui N, Mazliak L. Pitman Research Notes in Mathematics Series, No.364, Backward Stochastic Differential Equations [C]. Harlow: Addison Welsey Longman, 1997. 141~159.
  • 2[2]Briand P, Coquet F, Hu Y, Mémin J, Peng S. A converse comparison theorem for BSDEs and related properties of g-expectation[J]. Electon. Comm. Probab, 2000, 5: 101~117.
  • 3[3]Coquet F, Hu Y, Mémin J, Peng S. Filtration consistent nonlinear expectations and related g-expectation[J], Probab. Theory & Related Fields, 2002,123: 1~27.
  • 4[4]Chen Z, Epstein L. Ambiguity, risk and asset returns in continuous time[J]. Econometrica, 2002, 70:1403~1443.
  • 5[5]Pardoux E, Peng S. Adapted solution of a backward stochastic differential equation[J]. Systems Control Letters, 1990,14: 55~61.
  • 6[6]Peng S. A General Dynamic Programing Principle and Hamilton-Jacobi-Bellman Equation[J]. Stochastics, 1992, 38(2):119~134.
  • 7[7]El Karoui N, Peng S, Quence M C. Backward Stochastic Differential Equation in Finance[J]. Math. Finance 1997,7(1):1~71.
  • 8[1]Peng, S., BSDE and related g-expectations, Pitman Research Notes in Mathematics Series, 364, 1997,141-159.
  • 9[2]Chen, Z. & Epstein, L., Ambiguity, risk and asset returns in continuous time, Econometrica, 70(2002),1403-1443.
  • 10[3]Briand, P., Coquet, F., Hu, Y., Memin, J. & Peng, S., A converse comparison theorem for BSDEs and related properties of g-expectation, Electon. Comm. Probab., 5(2000), 101-117.

共引文献30

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部