摘要
彭实戈通过倒向随机微分方程引入了g-期望的概念.在关于g-期望的最基本的条件下,提出并证明了:半正定(半负定)二元函数基于g-期望的Jensen不等式在非空数集S上成立当且仅当生成元g在S上是超线性(次线性)的.
Peng S G. introduced the notion of g-expectation by backward stochastic differential equation. Under the most elementary conditions with respect to g-expectation, this paper puts forword and proves that Jensen's inequality for g-expectation on semi-positive definite (resp. semi-negatlve definite) bivariate function holds on nonempty real sets S if and only if the generator g is super-linear (resp. sub-linear) on S.
出处
《数学的实践与认识》
CSCD
北大核心
2008年第3期80-89,共10页
Mathematics in Practice and Theory
基金
国家自然科学基金(10671205)
中国矿业大学青年科技基金(2006A041)
关键词
倒向随机微分方程
JENSEN不等式
G-期望
条件G-期望
比较定理
backward stochastic differential equation
Jensen's inequality
g-expectation
conditional g-expectation
comparison theorem