期刊文献+

N×2N瓶颈指派问题及其阀门(threshold)算法

N×2N Bottleneck Assignment Problems with the Threshold Algorithm
原文传递
导出
摘要 讨论把2N项任务(或工件)指派(安排)给N个人(或机器)的问题.已知人i处理(或加工)任务j的时间花费是cij,i=1,2,…,N,j=1,2,…,2N,要求每人恰承担2项任务,每项任务恰由1个人承担.怎样分派任务,使完成任务最慢的人所花的时间最少. Consider a set of 2N jobs and a group of N persons (or machines) with processing time (or cost) cij if person i is assigned job j. Each person is required to be assigned exactly 2 jobs and each job is assigned to exactly one person. The objective function is the largest total processing time of any person. The problem is to assign the 2N jobs to N persons in such a way that the objective value is minimized.
作者 闻振卫
出处 《数学的实践与认识》 CSCD 北大核心 2008年第2期53-58,共6页 Mathematics in Practice and Theory
关键词 运筹学 指派问题 瓶颈指派问题 排序 生产管理 operations research assignment problem bottleneck assignment problem scheduling production management
  • 相关文献

参考文献11

  • 1Gross C. The Bottleneck Assignment Problem[M]. P-1630, The Rand Corporation, Santa Monica, California, 1959.
  • 2Garfinkel RS, An improved algorithm for the bottleneck assignment problem [J]. Operations Research,1971, (19):1747-1751.
  • 3唐春霞,韩丽娟,王瑞江,梁峰.二维瓶颈指派问题的动态规划算法[J].贵州工业大学学报(自然科学版),2004,33(1):6-9. 被引量:4
  • 4黄德才,经玲,杨万年,吕丽民.一类排序问题的通用模型与最优解[J].系统工程理论与实践,1997,17(9):27-30. 被引量:8
  • 5陶世群,蒲保兴.基于遗传算法的多级目标非平衡指派问题求解[J].系统工程理论与实践,2004,24(8):80-85. 被引量:25
  • 6Armstrong RD, Jin Z-Y. On solying a variation of the assignment problem[J]. European Journal of Operational Research,1995, (87) :142-147.
  • 7Balinski ML. Signature methods for the assignment problem[J]. Operations Research, 1985, (33) : 527-536.
  • 8Geetha S, Nair KPK. A variation of the assignment problem[J]. European Journal of Operational Research, 1993, (68) :422-426.
  • 9Kuhn HW. The Hungarian method for the assignment problem[J]. Naval Res Log Quart,1956, (3) :253-258.
  • 10Punnen AP. On bottleneck assignment problems under categorization[J]. Computers & Operations Research, 2004, (31) : 151-154.

二级参考文献14

  • 1O Gross. The Bottleneck Assignment Problem[M]. Santa Monica:The Rand Corporation, 1959.
  • 2Garfinkel R S. An Improved Algorithm for the Bottleneck Assignment Problem[J]. Oper Res, 1971,19:1747-1751.
  • 3Lawler E L. Combinatorial Optimization[M]. New York:Halt,Rinehart and Winston,1976.
  • 4Hammer P L. Time Minimizing Transportation Problems[J]. Nav Res Log Quart, 1969,16: 345 - 357.
  • 5Garfinkel R S, Rao M R. The Bottleneck Transportation Problem[J]. Nav Res Log Quart, 1971,18: 465-472.
  • 6Szwarc W. Some Remarks on the Time Transportation Problem[J]. Nav Res Log Quart, 1971,18:473-484.
  • 7黄德才,博士学位论文,1994年
  • 8常庆龙,数学的实践与认识,1987年,3期,28页
  • 9刘泉,运筹学的理论与实践(译),1987年
  • 10常庆龙,数学的实践与认识,1979年,3期,22页

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部