期刊文献+

广义L-R Smash-积和L-R Smash-余积

下载PDF
导出
出处 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第1期152-152,共1页 Journal of Henan Normal University(Natural Science Edition)
基金 国家自然科学基金(10571045) 河南省基础与前沿技术研究计划项目(072300410050)
  • 相关文献

参考文献2

二级参考文献12

  • 1[1]Bonneau P.,Gerstenhaber M.,Giaquinto A.et al.Quantum groups and deformation quantization:Explicit approaches and implicit aspects.J.Math.Phy.,2004,45:3703-3741.
  • 2[2]Bonneau P.and Sternheimer D.Topological Hopf algebras,quantum groups and deformation quantization.Lecture Notes in Pure and Appl.Math.,2005,239:55-70.
  • 3[3]PanaiteF.and Oystaeyen F.V.L-R smash product for (quasi)Hopf algebras.http://xxx.sf.nchc.gov.tw/abs/math.QA /0504386[2005-01-17].
  • 4[4]Zhang L.Y.Long bialgebras,dimodule algebras and quantum Yang-Baxter modules over Long bialgebras.Acta Mathematica Sinica,English Series,published online Mar.14,2006,Http://www.ActaMath.com.
  • 5[5]Panaite F.and Oystaeyen F.V.Some bialgebroids constructed by Kadison and Connes-Moscovoci are isomorphic.http://xxx.sf.nchc.gov.tw/abs/math.QA/0508638[2005-08-31].
  • 6[6]Wang S.H.and Li J.Q.On twisted smash product for bimodule algebras and the Drinfel'd double.Comm.Algebra,1998,26(8):2435-2444.
  • 7[7]Molnar R.K.Semi-direct products of Hopf algebras.J.Algebra,1977,47:29-51.
  • 8[8]Montgomery S.Hopf algebras and their actions on rings.CBMS,Lect.Notes,1993.
  • 9[9]Militaru G.A class of non-symmetric solutions for the integrability condition of the Knizhnik-Zamolodchikov equation:a Hopf algebra approach.Comm.Algebra,1999,27(5):2393-2407.
  • 10[10]Bahturin Y.,Fischman D.and Montgomery S.Bicharacters,twistings,and Scheunert's theorem for Hopf algebras.J.Algebra,2001,236:246-276.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部