期刊文献+

地下水水质监测与评价 被引量:84

Groundwater quality monitoring and assessment
下载PDF
导出
摘要 地下水由于分布广、水质好且开发费用低而成为全世界重要的供水水源。中国北方生活供水的一半来自地下水,地下水也是干旱期重要的农业灌溉水源。然而,地下水水质日益面临来自农业、工业和城市污染源的威胁。地下水水质监测是评价水质状况最可靠的方法,并可作为供水水源保护的早期预警系统。它为水管理部门和水用户提供可靠的科学数据以便更好地管理和保护地下水资源。世界上正在执行两个巨大的地下水质监测和评价项目:一个是欧盟的水框架计划;另一个是美国的国家水质评价计划。文章评述了地下水水质监测的现状,介绍了地下水易污性评价、地下水污染源分级和地下水污染风险评价的方法。地下水易污性分区图是土地利用规划和供水水源保护的基础。地下水污染源分级结果为污染源治理提供了优先顺序。地下水污染风险分区图圈划出地下水污染的高风险区,为地下水资源保护和地下水污染监测提供重要的依据。 Because of its wide availability, good quality and cost-effective for the development, groundwater has been an important source for water supply in the world. Groundwater accounts for more than half of the total water supply and provides important source of irrigation water during dry period in North China. However, the quality of groundwater is under great pressure of pollution from agricultural, industrial and domestic sources. Groundwater quality monitoring is the only reliable method to assess the groundwater quality status and serves as an early warning system to protect water supply sources. It provides unbiased scientific information for decision makers, water managers and water users for better management and protection of groundwater resources. The largest ongoing campaigns on groundwater quality monitoring and assessments are the groundwater monitoring for implementing European Union Water Framework Directive in Europe and the National Water Quality Assessment program in the United States of America. In this paper, the state of the art of groundwater quality monitoring in the world and methodologies for groundwater vulnerability assessment, pollution sources rating and groundwater pollution risk assessment were reviewed. Groundwater vulnerability map provides important information for land use planning and water supply sources protection. Groundwater pollution sources rating indicates most hazardous pollution sources and therefore provides a priority list for controlling the sources of pollution. Groundwater pollution risk map indicates the areas of potential serious pollution and can be used as a basis to locate sampling sites for groundwater pollution monitoring. These methods have been applied to the Urumqi River Basin, Beijing Plain and Jinan Karst Spring Catchment and presented in subsequent papers.
出处 《水文地质工程地质》 CAS CSCD 北大核心 2008年第1期1-11,共11页 Hydrogeology & Engineering Geology
基金 中国荷兰合作项目“中国地下水信息中心能力建设”
关键词 地下水易污性 污染源 污染风险 水质监测 groundwater vulnerability pollution sources pollution risk water quality monitoring
  • 相关文献

参考文献46

  • 1European Environment Agency (EEA).Environmental assessment report No 1:sustainable water use in Europe,part 1:sectoral use of water[R].1999.
  • 2China's Addenda 21,white paper on China's population,environment,and development in the 21st century[M].Beijing:China Environmental Science Press,1994:244.
  • 3Han Z.Groundwater for urban water supplies in Northern China-an overview[J].Hydrogeology Journal,1998,6(3):416-420.
  • 4Zhou Y,Nonner J C,Li W.Strategies and techniques for groundwater development in Northwest China[M].Beijing:China Land Press,2007:338.
  • 5Koreimann C,Grath J,Winkler G,et al.Groundwater monitoring in Europe[M].European Topic Centre on Inland Waters,1996.
  • 6Jousma G,Roelofsen F J.World-wide inventory on groundwater monitoring[M].The Netherlands:International Groundwater Resources Assessment Centre,2004.
  • 7European Parliament and Council Directive 2000/60/EC.Establishing a framework for Community action in the field of water policy[R].2000.
  • 8European Union Water Framework Directive:Common Implementation Strategy.Guidance on Monitoring for the Water Framework Directive[M].Final Version.Working Group 2.7.2003.
  • 9Hirsch R M,Alley W M,Wilber W G.Concepts for a National Water-Quality Assessment Program[M].U.S.Geological Survey Circular 1021,1988:42.
  • 10Gilliom R J,Alley W M,Gurtz M E.Design of the National Water-Quality Assessment Program-Occurrence and distribution of water-quality conditions[M].U.S.Geological Survey Circular 1112,1995:33.

二级参考文献26

  • 1Zhou Y. Groundwater regime zoning as a tool to design regional groundwater level monitoring networks[ C ]// Proceedings of the 34th conference of International Association of Hydrogeologists. Beijing, 2006.
  • 2ESRI. AreGIS version 9.0[M/OL]. 2005. http://www. esri. com.
  • 3Zondy Cyber. MapGIS 7.0[M/OL]. 2005. http://www. mapgis. com. cn.
  • 4Matheron G. The intrinsic random functions and their applications[J]. Adv. Appli. Prob., 1973, 5: 439-468.
  • 5Van Bracht M J, E Romijn. Redesign of groundwater level monitoring networks by application of Kalman filter andKriging methods[ C]//Procedings of the Symposium of theStochastic Approach to Subsurface Flow. Montvillar-genne, France, 1985.
  • 6Bogardi I, A Bardossy , L Duckstein. Multicriterion network design using geostatistics[J]. Water Resour. Res.,1985, 21 : 199 - 208.
  • 7McBratney A B, R Webster , T M Burgess. The design ofoptimal sampling schemes for local estimation and mapping of regionalized vafiables-I[J]. Computers and Geo.sciences, 1981, 7(4) :331 - 334.
  • 8Rouhani S. Variance reduction analysis[J]. Water Resour. Res. ,1985, 21(6) : 837 - 846.
  • 9Konikow L, Kendy E. Groundwater depletion: a global problem [ J ]. Hydrogeology Journal, 2005, 13 : 317 - 320.
  • 10McGuire V L, M R Jonson, R L Schieffer, et al. Water in storage and approaches to groundwater management, High Plains aquifers, 2000 [ R ]. US Geological Survey Circ 1243, 2003.

共引文献66

同被引文献990

引证文献84

二级引证文献594

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部