期刊文献+

基于人眼视觉的结构相似度图像质量评价方法 被引量:36

Method of image quality assessment based on human visual system and structural similarity
下载PDF
导出
摘要 分析了数字图像中亮度、纹理细节、空间位置等因素对人眼视觉特性的影响,建立了数学模型,将人眼视觉特性与图像的结构相似度结合起来,提出一种符合人眼视觉特性的图像质量评价新方法.该方法将图像划分成大小相等的分块,计算出各分块的亮度影响因子、纹理细节影响因子和空间位置影响因子,经过归一化处理得到每个分块的权值,用加权平均的结构相似度作为图像质量的评价指标.实验证明该方法能够区别图像中不同区域的图像特征,符合人眼视觉特性,与主观评价结果一致. Through analyzing the influence of certain digital image factors (brightness, texture details, dimentional position, etc. ) on human visual characteristic, a mathematic model which combines human visual characteristic and structural similarity of images was built, a new image-quality assessment method in accord- ance with human visual characteristic was put forward. By unoverlapped partitioning of images using equalsized sliding windows, this method can calculate the following factors with influence on the partitions: influencing brightness, influencing texture details, and influencing dimentional position. The weighted value of each partition is generated after normalization, and the weighted structural similarity is used as the assessing index of image quality. Experiment shows that this method is in accordance with human visual characteristic, and consistent with the result of subjective assessment.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2008年第1期1-4,共4页 Journal of Beijing University of Aeronautics and Astronautics
关键词 图像质量评价 人眼视觉系统 结构相似度 quality assessment of image human visual system structural similarity
  • 相关文献

参考文献6

  • 1Wifried Osberger. Perceptual vision models for picture quality assessment and compression applications [ D ]. Queensland: Department of Computer Science & Computer Engineering, Queensland University of Technology, 1999
  • 2Marmolin H. Subjective MSE measures [ J]. IEEE Trans On Systems, Man, and Cybernetics, 1986, 16 (3):486-489
  • 3Eskiciogln A M. Image quality measures and their performance [J]. IEEE Trans Comm,1995,43(12): 2959 -2965
  • 4Karunaseka S A. A distortion measure for blocking artifacts in image based on human visual sensitivity [ J]. IEEE Trans IP, 1995,4(6) : 713 -724
  • 5陆旭光,汪岳峰,胡文刚,潘攀.基于视觉感兴趣区的图像质量评价方法[J].微计算机信息,2005,21(10X):95-96. 被引量:16
  • 6郑圣超,叶正麟,陈作平.基于局部自相似性的图像质量度量[J].计算机应用,2006,26(3):605-606. 被引量:3

二级参考文献7

  • 1曹圣群,黄普明,鞠德航.HVS模型及其在静止图象压缩质量评价中的应用[J].中国图象图形学报(A辑),2003,8(4):379-386. 被引量:24
  • 2LI J,CHEN G,CHI Z.A Fuzzy Image Metric With Application to Fractal Coding[J].IEEE Transactions on Image Processing,2002,11(6):636-643.
  • 3DUNG LP,BALA S,SALAHADIN M,et al.A Measure for image quality[A].Symposium on Applied Computing Proceedings of the 1998 ACM Symposium on Applied Computing[C].Atlanta Georgia,United States,1998.513-519.
  • 4DALY S.The visible difference predictor:An algorithm for the assessment of image quality[A].Digital Image and Human Vision[C].MIT Press,1993.179-206.
  • 5FISHER Y.Fractal Image Compression-Theory and Application[M].New York:Springer,1994.
  • 6Claudio M. Privitera and Lawrence W. Stark. Algorithm for Defining Visual Regions-of-Interest: Comparison with Eye Fixations. IEEE :Transactions on Pattern Analysis and Machine Intelligence. VOL.22, NO.9SEPTEMBER 2000.
  • 7汪孔桥,沈兰荪,邢昕.一种基于视觉兴趣性的图象质量评价方法[J].中国图象图形学报(A辑),2000,5(4):300-303. 被引量:45

共引文献17

同被引文献354

引证文献36

二级引证文献218

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部