期刊文献+

一种利用共振声谱法检测气液两相介质中气体含量的新方法 被引量:2

Gas detection in a gas-liquid flow using an acoustic resonance spectroscopy method
下载PDF
导出
摘要 根据共振声谱原理,建立了气液两相介质中圆柱共振腔共振声谱的实验测量系统,研究了共振腔体中不同含量的气体对共振声谱的幅度和共振频率的影响.实验结果表明:共振幅度和共振频率随着气体流量的增加都呈指数衰减变化趋势,但共振幅度比共振频率的衰减速度快,都可反映气体流量的变化.另外,在理论上,推导了均匀流体模型气液两相介质中的圆柱共振腔的共振频率计算公式,并模拟计算了共振频率和气体含量的变化规律曲线.理论研究结果表明,随着持气率的增加,共振频率减小;当持气率较小时,共振频率衰减较快.这一结论已经被本文实验测量结果所验证.理论和实验研究表明,利用共振声谱法可以检测气液混相介质中气体含量,它为发展生产井中气液两相流分相含量检测方法提供一种可能的途径. Based on the theory of acoustic resonance spectroscopy (ARS), the measurement system of the ARS is established for gas content detection in the liquid mixed with a gas. The resonance amplitude (RA) and resonance frequency (RF) are studied with various gas flow rate in a cylindrical resonance cavity. The experimental results show that : the RF and the RA decrease with an exponent attenuation trend with the increase of gas flow rate passing through the cavity, and the attenuation rate of the RA is faster than that of the RF, although both of them are affected by the gas flow rate. Furthermore, the analytical expression for the RF is derived in a cylindrical cavity with a homogeneous flow model, and the curve of the RF with gas flow rate is numerically calculated. The results show that, the RF decreases with the increase of gas holdup. The attenuation rate of the RF is fast when the gas holdup is small. The theoretical and experimental results show that the ARS method could be used in gas detection in a gas-liquid medium, which paves a way for gas rate detection in a gas-liquid flow in a production well.
出处 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2008年第1期280-284,共5页 Chinese Journal of Geophysics
基金 国家自然科学基金项目(10674148和40774099)资助 大庆油田勘探公司研究生基金项目资助
关键词 共振声谱 共振频率 气体流量 衰减 气体检测 Resonance spectroscopy, Resonance frequency, Gas flow rate, Attenuation, Gas detection
  • 相关文献

参考文献3

二级参考文献16

  • 1Harris J M,徐德龙,王秀明,宋延杰,丛健生,陈德华.柱状扰动体引起圆柱谐振腔共振频率偏移的数值模拟[J].地球物理学报,2005,48(2):445-451. 被引量:11
  • 2应崇福.超声学[M].北京:科学出版社,1993..
  • 3Philip M Morse and K Uno Ingard. Theoretical Acoustics New York:McGraw-Hill, Inc. , 1968:467-599.
  • 4Ewing M B, et al. . On the Analysis of Acoustic Resonance Measurement. J. Acoust. Soc. Am. , 1993,85:780-920.
  • 5Akbar N, Nur A. Relating P-wave attenuation to permeability.Geophysics, 1993, 58: 20 ~ 29.
  • 6Klimentos T, McCann C. Relationship among compressional wave attenuation, porosity, clay content, and perrmeability in sandstones.Geophysics, 1990, 55: 998 ~ 1014.
  • 7White J E. Underground Sound. New York: Elsevier Science Publ.Co. Inc, 1983.
  • 8Nathalie L, Patrick N J, Rasolofosaon, et al. Sonic properties of rocks under confining pressure using the resonant bar technique. J.Acoust. Soc. Am., 1991, 89:980 ~ 990.
  • 9Mehl J B, Moldover M R. Precision acoustic measurements with a spherical resonator. Ar and C2H4: J. Chem. Phys., 1981, 74:4062 ~ 4077.
  • 10Ewing M B. On the analysis of acoustic resonance measurement. J.Acoust. Soc. Am., 1993, 85: 780~920.

共引文献18

同被引文献17

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部