期刊文献+

基于克隆遗传量子算法的多用户检测 被引量:4

Multiuser detection based on a clonal genetic quantum algorithm
下载PDF
导出
摘要 基于免疫克隆选择理论和遗传量子算法,提出了一种解决CDMA系统多用户检测问题的克隆遗传量子算法.通过使用克隆选择算子和遗传量子算法的理论,新算法能执行随机搜索和经验学习.所提的算法把随机神经网络嵌入到克隆遗传量子算法的每一代中.通过结合随机神经网络到CGQA中,可以加快CGQA的收敛速度、减少计算复杂度.另外,CGQA所提供的好的初值可以改善SHNN的性能,嵌入的SHNN还提高了CGQA的性能.在讨论了使用新算法设计多用户检测器的性能特点后,在CDMA系统进行了计算机仿真并和一些多用户检测器进行了比较.仿真结果证明了文中所提多用户检测器的抗多址干扰能力和抗远近效应能力都优于一些应用以前算法的多用户检测器. A clonal genetic quantum algorithm (CGQA) is proposed for multiuser detection in code-division multiple-access systems (CDMA)based on antibody clonal selection theory and the genetic quantum algorithm. The new algorithm can carry out a stochastic search with experiential learning by using clonal selection operators and genetic quantum algorithms. This algorithm embeds the stochastic Hopfield neural network (SHNN) into every generation of the CGQA to further improve the fitness of the population in each generation, thus reducing the computational complexity and speeding up the convergence rate. In addition, improved initial data estimation offered by CGQA improves the performance of the SHNN, and the embedded Hopfield neural network improves the performance of the CGQA. After discussing the main characteristics of the proposed receiver, the clonal genetic quantum algorithm multiuser detector (CGQAMUD), computer simulations are presented and the results compared with those from other detectors in CDMA systems. Simulation results show that the proposed algorithm for multiuser detection is better than other detection methods in terms of resistance to multiple-access-interference and the near-far effect.
作者 高洪元 刁鸣
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2008年第1期85-89,共5页 Journal of Harbin Engineering University
基金 哈尔滨市科学研究基金资助项目(2005AFXXJ033)
关键词 CDMA 多用户检测 遗传量子算法 HOPFIELD神经网络 克隆选择算法 CDMA multiuser detection genetic quantum algorithm Hopfield neural network clonal selection algorithm
  • 相关文献

参考文献8

  • 1ZHANG J H,HUAI J P,XIAO R Y,LI Bo.Resource management in the next generation DS-CDMA cellular networks[J].IEEE Communications Magazine,2004:52-58.
  • 2VERDU S.Minimum probability of error for asynchronous Gaussian multiple-access channels[J].IEEE Trans Info Theory,1986,32(1):85-96.
  • 3ERGUN C,HACIOGLU K.Multiuser detection using a genetic algorithm in CDMA communications systems[J].IEEE Trans Commun,2000,48 (8):1374-1383.
  • 4KECHRIOTIS G I,MANOLAKOS E S.Hopfield neural network implementation of the optimal CDMA multiuser detector[J].IEEE Transactions on Neural Networks,1996,7(1):131-141.
  • 5王永刚,焦李成.基于随机Hopfield神经网络的最优多用户检测器[J].电子学报,2004,32(10):1630-1634. 被引量:11
  • 6高洪元,柴晓辉,刁鸣,贾宗圣.基于免疫进化规划的多用户检测技术研究[J].智能系统学报,2007,2(2):78-82. 被引量:2
  • 7HAN K H,KIM J H.Genetic quantum algorithm and its application to combinatorial optimization problem[C]//Proceedings of the 2000 IEEE International Conference on Evolutionary Computation.[S.l.]:IEEE Press,2000.
  • 8DE CASTRO L N,VON ZUBEN F J.The clonal selection algorithm with engineering application[C]//Genetic and evolutionary computation conference.Lasvegas,USA,2000.

二级参考文献20

  • 1[1]VERDU S.Minimum probability of error for asynchronous Gaussian multiple-access channels[J].IEEE Trans Info Theory,1986,32 (1):85-96.
  • 2[2]ERGUN C,HACIOGLU K.Multiuser detection using a genetic algorithm in CDMA communications systems[J].IEEE Trans Commun,2000,48(8):1374-1383.
  • 3[3]LIM H S.Multiuser detection for DS-CDMA systems using evolutionary programming[J].IEEE Communications Letters,2003,7(3):101-103.
  • 4[6]KECHRIOTIS G I,MANOLAKOS E S.Hopfield neural network implementation of the optimal CDMA multiuser detector[J].IEEE Transactions on Neural Networks,1996,7(1):131-141.
  • 5S Verdu.Multiuser Detection[M].Cambridge,UK,Cambridge Univ.Press.1998.
  • 6S Verdu.Minimum probability of error for asynchronous Gaussian multi-access channel[J].IEEE Trans.Inform.Theory,1986:85-96.
  • 7B Aazhang,B Paris,G C Orsak.Multistage detection for asynchronous code division multiple access communication[J].IEEE Trans.Commum.1990(4):509-519.
  • 8L Castedo,O Macchi.Maximizing the information transfer for adaptive unsupervised source separation[A].In IEEE Workshop on Signal Proc[C],1997.65-68.
  • 9Yi Sun.Eliminating-highest-error and fastest-metric-descent criteria and iterative algorithms for Bit synchronous CDMA Multiuser Detection[A].In IEEE ICC'98[C],1998.1576-1580.
  • 10N Wang,W Zhu,B Zheng.Blind multiuser detection for DS-CDMA systems:A neural network approach[A].In IEEE ISCAS'99[C],Orlando,1999,03.603-606.

共引文献11

同被引文献69

引证文献4

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部