期刊文献+

谱负Levy过程的三者联合密度函数与Gerber-Shiu折现罚金函数(英文)

The joint density function of three characteristics and the Gerber-Shiu discounted penalty function for the spectrally negative Levy process
下载PDF
导出
摘要 将开始于u(≥0)的谱负Levy过程(即没有正跳的Levy过程)看作推广的风险模型,得到了破产时刻和破产瞬间前后余额三者的联合密度函数,运用已得结论和∫∞e-δtgt(x)dt(gt(x)为过程在时刻t的密度函数)给出了Gerber-Shiu折现罚金函数. The spectrally negative Levy process starting at u(≥0) (namely the Levy process with no positive jumps) is regarded as the generalized risk model and the joint density function of three characteristics: the time of ruin, the surpluses immediately before and at ruin is obtained. Using the derived results and ∫0^∞ e^-a gt (x)dt where g, (x) is supposed to be the density function of the process at time t, the Gerber-Shiu discounted penalty function for the spectrally negative Levy process is proposed.
出处 《天津师范大学学报(自然科学版)》 CAS 2008年第1期55-59,共5页 Journal of Tianjin Normal University:Natural Science Edition
基金 Financial support from the National Natural Science Foundation of China(10571132)
关键词 谱负 联合密度函数 GERBER-SHIU折现罚金函数 spectrally negative joint density function Gerber-Shiu discounted penalty function
  • 相关文献

参考文献9

  • 1Gerber H,Shiu E.On the time value of ruin[J].North American Actuarial Journal,1998,2:48-78.
  • 2Chiu S,Yin C.The time of ruin,the surplus prior to ruin and the deficit at ruin for the classical risk process perturbed by diffusion[J].Insurance:Mathematics and Economics,2003,33:59-66.
  • 3Renaud J F,Zhou X.Distribution of the present value of dividend payments in a Levy risk model[J].Journal of Applied Probability,2007,44:420-427.
  • 4Wu R,Wang G,Wei L.Some results on the sequence of zero points of the surplus process in the classical risk model[J].Insurance:Mathematics and Economics,2003,33:19-27.
  • 5Zhang C,Wang G.The joint density function of three characteristics on jump-diffusion risk process[J].Insurance:Mathematics and Economics,2003,32:445-455.
  • 6Gerber H,Shiu E.The joint distribution of the time of ruin,the surplus immediately before ruin,and the deficit at ruin[J].Insurance:Mathematics and Economics,1997,21:129-137.
  • 7Bertoin Jean.Levy process[M].Cambridge:Cambridge University Press,1996.
  • 8Bertoin Jean.Exponential decay and ergodicity of completely asymmetric Levy process in a finite interval[J].Annals of Applied Probability,1997,7:156-169.
  • 9Ren X,Zhang C.The scale function and genelized Dickson's formula for the spectrally negative Levy process[J].Acta Scientiarum Naturalium Universitatis Nankaiensis(To be published).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部