期刊文献+

THE λ-GROBNER BASES UNDER POLYNOMIAL COMPOSITION 被引量:1

THE λ-GROBNER BASES UNDER POLYNOMIAL COMPOSITION
原文传递
导出
摘要 Polynomial composition is the operation of replacing variables in a polynomial with other polynomials. λ-Grgbner basis is an especial Grobner basis. The main problem in the paper is: when does composition commute with λ-Grobner basis computation? We shall answer better the above question. This has a natural application in the computation of λ-Grobner bases.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2007年第4期610-613,共4页 系统科学与复杂性学报(英文版)
基金 The research is supported by the National Natural Science Foundation of China under Grant No. 10771058, Hunan Provincial Natural Science Foundation of China under Grant No. o6jj20053, and Scientific Research Fund of Hunan Provincial Education Department under Grant No. 06A017.
关键词 λ-Grobner basis polynomial composition term ordering 多项式 排序 λ 数学分析
  • 相关文献

参考文献9

  • 1H. Hong, Grobner bases under composition I, J. Symb. Comput., 1998,25:643-663.
  • 2J. Gutierrez, Reduced Grobner bases under composition, J. Symb.Comput., 1998, 26: 433-444.
  • 3W. Adams and P. Loustaunau, An introduction to Grobner bases, graduate studies in mathematics 3, Amer. Math. Soc., 1994, 25(2):211-213.
  • 4T. Becker and V. Weispfenning, Grobner Bases, A Computational Approach to Commutative Algebra, GTM 141, Springer, 1993.
  • 5G. Greuel and G. Pfister, Advances and improvements in the theory of standars bases and syzygies, Arch. Math., 1906, 66:163-176.
  • 6H. Grabe, The tangent cone algorithm and homogeization, J. pure Applied Algebra, 1994, 97: 303-312.
  • 7J. W. Liu, The term orderings which are compatible with composition Ⅱ, J. Symb. Comput, 2003,35:153-168.
  • 8J. W. Liu, Homogeneous GrSbner bases under composition, Journal of Algebra, to appear.
  • 9M. S. Wang, Remarks on Grbner basis for ideals under composition, Proceedings of the 2001 International Symposium on Symbolic and Algebraic Computation, Ontario, 2001, 237-244.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部