期刊文献+

神经网络预测矿震危险性 被引量:2

Influence of data on the quality of mine tremors hazard assessment using neural networks
下载PDF
导出
摘要 开采冲击危险煤层时,需要对能量大于等于104 J矿震发生的时间和地点进行预测。但目前所预测的结果不能满足现场要求。依据波兰一个长壁工作面的矿震事件,研究了神经网络系统中输入数据类型和形式对矿震预测效果的影响,确定了提高预测效果的方法。实践证明,采用神经网络技术可以对矿震危险性进行预测。 During hard coal mining operations conducted under conditions of rockburst hazard, one of the most important preventive measures can be the prediction of occurrence time and location of the strong seismic mine tremors of energy E≥t 10^4 J. This is a very difficult task and the way it is being performed usually appears to be unsatisfactory. Therefore, attempts have been made to use neutral networks, specifically trained for this application. The paper presents an approach for determining an influence of the type and shape of the input data on the effectiveness of such a prediction. The considerations are based on a selected example of the seismic activity recorded during longwall mining operations conducted in one of the Polish mines.
出处 《煤炭科技》 2007年第4期71-74,共4页 Coal Science & Technology Magazine
关键词 震动 神经网络 危险性预测 tremors neural networks hazard
  • 相关文献

参考文献7

  • 1Konopko,W.Experimental basis for qualifying mining excavations in hard coal mines according to the rockburst hazard[].Prace Naukowe G|ównego Instytutu GórnictwaNr.1994
  • 2Bishop,C.Neural Networks for Pattern Recognition[]..1995
  • 3Zweig,M.H,and Campbell,G.Receiver-Operating Characteristic(RDC)Plots:A Fundamental Evaluation Tool in Clinical Medicine[].ClinChem.1993
  • 4Gibowicz,S.J,Kijko,A.An introduction to miningseismology[].International Geophysics Series.1990
  • 5Lasocki,S.Statistical prediction of strong mine tremors[].Acta GeophPol.1993
  • 6Lasocki,S.Statistical short-term prediction in mining-induced seismicity[].Rockbursts and Seismicity in Mines’.1993
  • 7Fausett,L.Fundamentals of Neural networks[]..1994

同被引文献15

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部