期刊文献+

用多次建表的ISAT方法计算激波诱导火焰失稳 被引量:1

Computations of Flame Instability Induced by Shock Wave Using Multiple in Situ Adaptive Tabulation
下载PDF
导出
摘要 对减少燃烧反应化学计算时间的动态自适应建表(ISAT)方法进行了改进,采用多次建表的方法计算了激波诱导火焰失稳的二维瞬态过程.计算结果表明,ISAT方法与直接积分计算结果以及实验结果吻合较好,能够满足计算精度的要求.多次建表方法在没有降低ISAT方法效率的前提下,可有效限制数据表容量,总CPU计算时间可减少2.53倍,其中化学反应的CPU计算时间则减少3.75倍.对瞬态燃烧问题而言,多次建表ISAT方法提供了减少燃烧化学反应计算时间的有效思路. An in situ adaptive tabulation (ISAT) method, which is adopted to enhance the computational performance of combustion chemistry, is developed to numerically simulate the two-dimensional flame instability induced by shock waves. The computational results show that the multiple ISAT method provides sufficient computational accuracy compared with the direct integration method and experimental results. The multiple ISAT method is capable of limiting the size of data table, without lowering the computational efficiency. A total CPU time speedup of 2.53 and a chemical CPU time speedup of 3.75 can be obtained when the multiple ISAT method is applied to the present study. As to or the transient combustion problem, the multiple ISAT method provides an efficient approach for reducing the computational CPU time of combustion chemistry.
出处 《燃烧科学与技术》 EI CAS CSCD 北大核心 2007年第6期515-520,共6页 Journal of Combustion Science and Technology
基金 北京理工大学爆炸科学与技术国家重点实验室开放基金资助项目(KFJJ06-3)
关键词 动态自适应建表 化学反应 火焰失稳 计算精度和效率 in situ adaptive tabulation chemical reaction flame instability computational accuracy and efficiency
  • 相关文献

参考文献15

  • 1Law C K.Comprehensive description of chemistry in combustion modelingg[J].Combustion Science and Technology,2005,177(5):845-870.
  • 2Massias A,Diamantis D,Mastorakos E,et al.An algorithm for the construction of global reducd mechanisms with CSP data[J].Combustion and Flame,1999,117(4):685-708.
  • 3Nafe J,Maas U.Hierarchical generatio of ILDMs of higher hydrocarbons[J].Combustion and Flame,2006,135(1/2):17-26.
  • 4Jones W P,Rigopoulos S.Reduced chemistry for hydrogen and methanol premixed flames via RCCCE[J].Combustion Theory and Modelling,2007,11(5):755-780.
  • 5Tonse S,Moriart N W,Frenklach M,et al.Computational economy improvements in PRISM[J].International Journal of Chemical Kinetics,2003,35(9):438-452.
  • 6Pope S B.Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation[J].Combustion Theory and Modelling,1997,1(1):41-63.
  • 7Embouazza M,Haworth D,Darabiha N.Implementation of detailed chemical mechanisms into multidimensional CFD using in situ adaptive tabulation:Application to HCCI engines[C] //SAE Paper.San Diego,CA,USA,2002,2002-01-2773.
  • 8Singer M A,Pope S B,Najm H N.Operator-splitting with ISAT to model reacting flow with detailed chemistry[J].Combustion Theory and Modelling,2006,10(2):199-217.
  • 9Wu Y,Veljkovic I,Haworth D C.Effective use of storage/retrieval-based chemistry acceleration in CFD[C]//2006 International Multidimensional Engine Modeling Users' Group Meeting.Detroit,MI,2006:1-6.
  • 10Veljkovic I.Parallel Algorithms and Software for Multi-Scale Modeling of Chemically Reacting Flows and Radiative Heat Transfer[D].Philadelphia:Department of Computer Science and Engineering,The Pennsylvania State University,2006.

二级参考文献12

  • 1Chan C. Collision of a shock wave with obstacles in a combustible mixture [ J]. Combust. Flame, 1995, 100:341 - 348.
  • 2Li C, Kailasanath K. Detonation initiation in pulse detonation engines [ R ]. AIAA 2003-1170.
  • 3Gordon S, Mcbride B J. Computer program for calculation of complex chemical equilibrium compositions and applications [ R]. NASA-RP-1311, 1994.
  • 4Leveque R J. Wave propagation algorithms for multidimensional hyperbolic systems [ J ]. J. Computational Physics, 1997, 131:327-353.
  • 5Kailasanath K. Recent developments in the research on pulse detonation engines [ R]. AIAA 2002-0470.
  • 6Lee J H S, Moen I O. The mechanism of transition from deflagration to detonation in vapor cloud explosions [ J ].Progress in Energy and Combustion Science, 1980, 6:359 - 389.
  • 7Khokhlov A M, Oran E S, Thomas G O. Numerical simulation of deflagration-to-detonation transition: The role of shock-flame interactions in turbulent flames [ J ]. Combust. Flame, 1999, 117:323-239.
  • 8董刚,刘宏伟,陈义良.通用甲烷层流预混火焰半详细化学动力学机理[J].燃烧科学与技术,2002,8(1):44-48. 被引量:48
  • 9陈坚强,张涵信,高树椿.激波诱导混合增强数值研究[J].计算物理,2002,19(5):408-412. 被引量:3
  • 10韩启祥,王家骅,王波.预混气爆震管中爆燃到爆震转捩距离的研究[J].推进技术,2003,24(1):63-66. 被引量:12

共引文献8

同被引文献23

  • 1贾明,解茂昭.ISAT在HCCI发动机多维详细反应动力学计算中的应用及其改进[J].内燃机学报,2006,24(1):9-14. 被引量:4
  • 2肖保国,钱炜祺,杨顺华,乐嘉陵.甲烷点火燃烧的简化化学反应动力学模型[J].推进技术,2006,27(2):101-105. 被引量:14
  • 3钱炜祺,杨顺华,肖保国,乐嘉陵.碳氢燃料点火燃烧的简化化学反应动力学模型[J].力学学报,2007,39(1):37-44. 被引量:11
  • 4Westbrook CK, Dryer FL. Simplified reaction mechanism for the oxidation of hydrocarbon fuels flames. Combustion Science and Technology, 1981, 27:31-43.
  • 5Westbrook CK, Dryer FL. Chemical kinetic modeling of hydrocarbon combustion. Pro9 Energy Combust Sci, 1984, 10:1-57.
  • 6Hautman D J, et al. A multiple-step overall kinetic mechanism for the oxidation of hydrocarbons. Combust Sci and Tech, 1981, 25:219-235.
  • 7Eklund DR, Baurle RA, Gruber MR. Numerical study of a scramjet combustor fueled by an aerodynamic ramp injector in dual-mode combustion. AIAA Paper 2001-0379.
  • 8Pope SB. Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation. Combustion Theory Modelling, 1997, 1:41-63.
  • 9James S, Anand MS, Razdan MK, et al. In situ detailed chemistry calculations in combustor flow analyses. Journal of Engineering for Gas Turbines and Power, 2001, 123: 747-756.
  • 10Yang B, Pope SB. Treating chemistry in combustion with detailed mechanisms -in situ adaptive tabulation in principal direction premixed combustion. Combustion and Flame, 1998, 112:85-112.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部