摘要
Knitted fabric is very different from woven fabric due to its more complicated knitting structures. The buckling of knitted fabric sheets subjected to simple shear in the wale direction is investigated analytically in consideration of the large deformation of fabric sheet in critical configuration. The theory on instability of finite deformation is applied to the analysis. All the stress boundary conditions of knitted fabric sheet are satisfied. An equation to determine the buckling direction angle is derived. It is shown that there are two possible buckling modes, flexural mode and barreling mode. The buckling condition equations for the flexural mode and barreling mode are also obtained respectively. Numerical illustrations reveal that only the flexural mode can actually occur and the barreling mode cannot, which agrees with the experimental observations. For a permitted buckling mode on margin boundaries, the critical value of shear amount and the buckling direction angle can be determined.
Knitted fabric is very different from woven fabric due to its more complicated knitting structures. The buckling of knitted fabric sheets subjected to simple shear in the wale direction is investigated analytically in consideration of the large deformation of fabric sheet in critical configuration. The theory on instability of finite deformation is applied to the analysis. All the stress boundary conditions of knitted fabric sheet are satisfied. An equation to determine the buckling direction angle is derived. It is shown that there are two possible buckling modes, flexural mode and barreling mode. The buckling condition equations for the flexural mode and barreling mode are also obtained respectively. Numerical illustrations reveal that only the flexural mode can actually occur and the barreling mode cannot, which agrees with the experimental observations. For a permitted buckling mode on margin boundaries, the critical value of shear amount and the buckling direction angle can be determined.
基金
Supported by National Natural Science Foundation of China
the Royal Society of UKunder their joint grant scheme