期刊文献+

Non-Rigid Medical Image Registration with Joint Histogram Estimation Based on Mutual Information 被引量:4

Non-Rigid Medical Image Registration with Joint Histogram Estimation Based on Mutual Information
下载PDF
导出
摘要 A mutual information-based non-rigid medical image registration algorithm is presented. An approximate function of Hanning windowed sinc is used as kernel function of partial volume (PV) interpolation to estimate the joint histogram, which is the key to calculating the mutual information. And a new method is proposed to compute the gradient of mutual information with respect to the model parameters. The transformation of object is modeled by a free-form deformation (FFD) based on B-splines. The experiments on 3D synthetic and real image data show that the algorithm can converge at the global optimum and restrain the emergency of local extreme. A mutual information-based non-rigid medical image registration algorithm is presented. An approximate function of Hanning windowed sinc is used as kernel function of partial volume (PV) interpolation to estimate the joint histogram, which is the key to calculating the mutual information , And a new method is proposed to compute the gradient of mutual information with respect to the model parameters. The transformation of object is modeled by a free-form deformation (FFD) based on B-splines. The experiments on 3D synthetic and real image data show that the algorithm can converge at the global optimum and restrain the emergency of local extreme.
出处 《Transactions of Tianjin University》 EI CAS 2007年第6期452-455,共4页 天津大学学报(英文版)
基金 Supported bythe National Basic Research Programof China ("973"Program) (No2003CB716103) Key Project of Shanghai Scienceand Technology Committee(No05DZ19509)
关键词 non-rigid registration free-form deformation (FFD) Hanning windowed sinc partial volume (PV) interpolation 非强制性注册 直方图 计算机绘图 信息共享
  • 相关文献

参考文献11

  • 1陈晓燕,辜嘉,李松毅,舒华忠,罗立民.A method based on mutual information and gradient information for medical image registration[J].Journal of Southeast University(English Edition),2003,19(1):35-39. 被引量:3
  • 2Frederik Maes,Dirk Vandermeulen,Paul Suetens.Comparative evaluation of multiresolution optimization strategies for multimodality image registration by maximization of mutual information[].Medical Image Analysis.1999
  • 3Lee S,Wolkng C,Shin S Y.Scattered data interpolation with multilevel B-splines[].IEEE Trans Visualization Comput Graph.1997
  • 4SederbergTW,Parry SR.Free-form deformation and solid geometric models[].Comput Graph (ACM).1986
  • 5Thomas M Lehmann,Claudia Conner,Klaus Spitzer.Survey: Interpolation methods in medical image processing[].IEEE Thins Med Imag.1999
  • 6Emiliano D‘Agostino,Frederik Maes,Dirk Vandermeulen et al.A viscous fluid model for multimodality non-rigid image registration using mutual information[].Medical Image Analysis.2003
  • 7Nicholas J Tustison,Amir A Amini.Biventricular myocar-dial strains via nonrigid registration of anfigatomical NURBS models[].IEEE Trans Med Imag.2006
  • 8Rueckert D,Sonoda L I,Hayes C et al.Nonrigid registration using free-form deformations: Application to breast MR images[].IEEE Trans Med Imag.1999
  • 9Barbara Zitova,Jan Flusser.Image registration methods: A survey[].Image and Vision Computing.2003
  • 10Chen Xiaoyan Gu Jia Li Songyi Shu Huazhong Luo Limin(Department of Biological Science and Medical Engineering,Southeast University,Nanjing 210096,China).A method based on mutual information and gradient information for medical image registration[].东南大学学报(英文版).2003

共引文献2

同被引文献32

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部