期刊文献+

粘弹性流体的分数元模型及圆管起动流 被引量:6

Fractional Element of Viscoelastic Fluids and Start-up Flow in a Pipe
下载PDF
导出
摘要 分数元模型所描述的非牛顿流体属于复杂粘弹性流体,其应力与应变的分数阶时间导数成正比。本文提出一种用弹簧和油壶连接组成的分形网络结构来比拟分数元模型的应力-应变特性,利用Heaviside运算微积,证明了该分形网络结构对应的粘弹性流体为1/2阶导数的分数元。并证明了构成其他分数阶导数分数元模型需要引入弹簧和油壶的多重分形网络结构。本文还导出了分数元模型的圆管起动流的解析解,研究了分数元模型起动过程振荡特征与该模型导数阶β之间的关系;发现在β≠1的情况下,随时间的进程,圆管内分数元模型的运动最终均将趋于静止,只有β=1的情况是一个例外。 Fractional elements describe complex viscoelestic fluids, which stress is proportional to fractional derivtive of strain, namely σ = Gλ^βd^βε/dt^β,(0≤β≤1). The stress-strain relation of fractional elements was realized physically through a kind of spring-dashpot fractance. Based on Heaviside operational calculus, the stress-strain relation of the fractance is the same as the fractional element with 1/2 order derivative. Furthermore the spring-dashpot fractance with stress-strain relation of general fractional elements was presented. The exact solution of start-up flow of fractional elements in a pipe was derived by using fractional calculus. The oscillation of flow was studied. It is found that in the case of β≠1,with the exception β= 1, the motion of fractional element in the pipe will be rest, if the time is long enough.
出处 《力学季刊》 CSCD 北大核心 2007年第4期521-527,共7页 Chinese Quarterly of Mechanics
关键词 粘弹性流体 分数元 分数阶导数 Heaviside运算微积 弹簧-油壶分形系统 viscoelestic fluid fractional element fractional derivative Heaviside operational calculus spring-dashpot fractance
  • 相关文献

参考文献11

  • 1Blair G W S. The role of Psychophysics in rheology[J]. Journal of Colloid Science, 1947,2:21 - 32.
  • 2Blair G W S. Psychoreology.-link between the past and the present[J]. Journal of Texture Studies, 1974,5:3- 12.
  • 3Gerasimov A N. A generalization of linear laws of deformation and its application to inner friction problems[J]. Prikl Mat Mekh,1948, 12:251 - 259.
  • 4Podlubny I. Fractional Differential Equations[M]. Academic Press, 1999,271 - 273.
  • 5Ross B. Fractional Calculus: a historical apologia for the development of a calculus using differentiation and antidifferentiation of non-integral orders[J]. Mathematics Magazine, 1977, 50(3):115- 122.
  • 6Yin Y B, Zhu K Q. Oscillating flow of a viscoelastic fluid in a pipe with the fractional Maxwell model[J]. Applied Mathematics and Com- putation, 2006,173(1) : 231 - 242.
  • 7Jordan P M, Puri A, Boros G. On a new exact solution to Stokes'first problem for Maxwell fluids[J]. International Journal of Non-Linear Mechanics, 2004,39 : 1371 - 1377.
  • 8Schiessel H, Blumen A. Hierarchical analogues to fractional relaxation equations[J]. J Php A Math Gen, 1993, 26:5057-5069.
  • 9Heymans N, Bauwens J C. Fractal rheological models and fractional differential equations for viscoelastic behav[or[J]. Rheologica Acta, 1994, 33;210- 219.
  • 10Courant R,Hilbert D.数学物理方法(卷Ⅱ)[M].北京:科学出版社,1981(第五章附录二“瞬态问题和Heaviside运算微积”).

同被引文献74

引证文献6

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部