期刊文献+

二层密度分层流体重力流的数值模拟 被引量:1

Numerical Simulation of Gravity Flows for Two-Layer Stratified Fluid
下载PDF
导出
摘要 从RANS方程和RNGk-ε湍流模型出发,采用流体体积法(VOF)来模拟密度分层流动,对盐水和淡水因密度差异导致的分层重力流动现象进行了数值模拟。文中报道了平底水槽重力流、狭孔交换流的数值模拟结果,分层重力流锋面运动速度的计算值与现有的半理论半经验公式一致。为了揭示地形变化对分层重力流的影响,对设有缓变潜堤的水槽内分层重力流动的形成过程进行了数值模拟,给出了重力头推进速度和局部流场的计算结果,并讨论了分层流界面、流量和锋面附近的流速分布特征。 Based on RANS equations and RNG κ-ε turbulence model, the two-layer stratified gravity flow with the free surface in environmental flows was studied numerically. The VOF method was adopted to simulate the interface of the density stratified flows. The distributions of velocity interface level, flow rate and the position of gravity current head were provided. According to these numerical results, the velocity of gravity head with theoretical data and the experiments results available in the literature were compared. The feaures of stratification and turbulence were described reasonable by the models. The computational results agree well with the theoretical data and experimental results.
出处 《力学季刊》 CSCD 北大核心 2007年第4期539-548,共10页 Chinese Quarterly of Mechanics
基金 国家自然科学基金(10272070) 上海市重点学科建设项目(Y0103)
关键词 VOF法 分层流动 重力流 交界面 VOF stratified flow gravity current interface
  • 相关文献

参考文献8

  • 1Yih C S. Stratified Flows[M]. Academic Press, 1980.
  • 2Middleton G V. Experiments on density and turbidity currents. 1. Motion of the head[J]. Canad J Earth Sci, 1966, 3:523- 546,570.
  • 3Benjiamin T B. Gravity currents and related phenomena[J]. J Fluid Mech, 1968, 31:209 - 248, 70 - 73.
  • 4Turner J S. Buoyancy Effects in Fluids[M]. Cambridge Press, 1973.
  • 5Fluent 6.1 User's guide. Volume 1 -5[S], Fluent Inc.
  • 6Zhu D Z. Control curves of two-layer flows[J]. J Hydraul Eng, 2002, 128(1) : 113 - 116.
  • 7Zhu D Z, Lawrence G A. Hydraulics of Exchange Flows[J]. J Hydr Engeg, ASCE, 2000, 126(12) :921 - 928.
  • 8Zhu D Z, Lawrence G A. Holmboe instabilities in exchange flows[J]. J Fluid Mech, 2001, 429:391 - 409.

同被引文献11

  • 1Meiburg E, Kncller B. Turbidity currents and their deposits[J]. Annual Review of Fluid Mechanics, 2010, 42(1): 135-156.
  • 2Felix M. Flow structure of turbidity currcnts[Y]. Sedimentology, 2002, 49(3):397-419.
  • 3Huang H Q, Imran J, Pirmcz C. Numerical model of turbidity currents with a deforming bottom boundary[J]. Journal of Hydraulic Engineering, 2005, 131(4):283-293.
  • 4Huang H Q, Imran J, Pirmez C. Numerical study of turbidity currents with sudden-release and sustained-inflow mechanisms[J]. Journal of Hydraulic Engineering, 2008, 134(9): II 99-1209.
  • 5Hartcl C, Mciburg E, Necker F. Analysis and direct numerical simulation of the flow at a gravity current head. Part I: flow topology and front speed for slip and no-slip boundaries[J]. Journal of Fluid Mechanics, 2000, 418(1):189-212.
  • 6Cantcro M I, Balachandar S, Garia M H, ct al. Direct numerical simulations of planar and cylindrical density currents[J]. Journal of Applied Mechanics, 2006, 73(1):923-930.
  • 7Ooi S K, Gonstantincscu G, Weber L J. 2D large-eddy simulation of lock-exchange gravity current flows at high Grashofnumbcrs [J]. Journal of Hydraulic Engineering, 2007, 133(9):1037-1047.
  • 8Singh J, Wu W, Wang S S Y. Simulation of saline and turbid gravity currents using a subgrid model[C]//Wodd Environmental and Water Resources Congress 2008:Ahupua' a Proceeding of the World Environmental and Water Resources Congress 2008. Honolulu, Hawaii, 2008:1-10.
  • 9Deardoff J W. A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers[J]. Journal of Fluid Mechanics, 1970, 41(2):465-553.
  • 10Sutherland B R, Kyba P J, Flynn M R. Intrusive gravity currents in two-layer fluids[J]. Journal of Fluid Mechanics, 2004, 514(1): 327-353.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部