摘要
研究具有变动边界的一维区域上的双曲型积微分方程ut=a(x,t)u(x,t)x+∫t0b(t,τ,x)u(x,τ)xdτx+p(x,t)u(x,t)x+f(x,t)x∈Ω(t),t∈J的初边值问题.提出一类半离散和全离散有限元逼近格式,并表明了后者的稳定性.通过空间变量代换.把问题化成了更易于处理的,定义在固定空间区域上的等价“标准”形式;通过引入Ritz-Volterra投影,有效处理了时间积分项产生的影响;并结合使用其他微分方程先验误差估计技巧,对两格式都得到了最优阶的L2模和H1模收敛结果.
In this paper, we study the one dimensional integro differential equation with initial boundary conditions in a time dependent domain for hyperbolic type u tt =a(x,t)u(x,t) x+∫ t 0b(t,τ,x)u(x,t) xdτ x+p(x,t)u(x,t) x+f(x,t) x∈Ω(t),t∈J Both continuous time and discrete time finite element approximations are suggested, the stability of the latter is shown. By changing space variable, we translate the problem into a more disposable, equivalent “standand” form defined in a boundary settled domain; by introducing Ritz Volterra projection, we effectively treat the influence coming from the time integral term; other priori error estimate technique for differential equations is also applied, finally, the optimal L 2 norm and H 1 norm convergence results for the two approximations are derived.
出处
《工程数学学报》
CSCD
北大核心
1997年第3期37-49,共13页
Chinese Journal of Engineering Mathematics
基金
国家教委博士点基金