期刊文献+

基于特征数期望最小化的人脸检测分类器构建 被引量:2

Face Detection Based on Minimum Feature Number Expectation
下载PDF
导出
摘要 目前Boosting训练算法已被广泛地应用于人脸检测中级联分类器的构建,而Boosting及其大量改进算法都主要关注于检测率而不是分类器的性能。文中提出了一种新的基于检测特征数期望值最小化的级联分类器构建方法使得分类器的各层特征数组合达到最佳性能。实验结果表明最优组合的检测特征数期望值比已发表的组合要小将近2倍,从而获得了比已发表的特征数组合高出近80%的性能提升。因此该方法适用于使用Boosting及其变形算法构建具有最佳性能的级联分类器。 Various training methods using Boosting algorithm to construct a detector cascade are mainly focused on detection rate instead of performance.This paper proposes a novel cascaded classifier constructing method based on the minimization of the cascade feature number expectation which pays direct attention to the performance of detector.The experimental result indicates that the best combination has feature number expectation of 2 times lower than the worst,thus gaining an 80% performance promotion than the published combination.
出处 《计算机仿真》 CSCD 2007年第12期328-331,共4页 Computer Simulation
关键词 人脸检测 适应性自益算法 级联分类器 特征数期望值 快速检测 Face detection,AdaBoost Cascade classifier Expectation of feature number Fast detection
  • 相关文献

参考文献8

  • 1S Z Li et al.Statistical learning of multi-viewface detection[C].in Proc.7th Eur.Conf.Computer Vision.,Copenhagen,Denmark,May 2002.67-81.
  • 2P Viola and M Jones.Rapid object detection using a boosted cascade of simple features[J].in Proc.2001 IEEE Computer Soc.Computer Vision and Pattern Recognition,Dec 2001,1(HI):511-518.
  • 3Yoav Freund and Robert E Schapire.A decision-theoretic generalization of online learning and an application to boosting[J].In Computational Learning Theory:Eurocolt '95.Springer-Verlag,1995.23-37.
  • 4Rong Xiao,Long Zhu,Hongjiang Zhang.Boosting Chain Learning for Object Detection[C].ICCV 2003.709-715.
  • 5Bo Wu,Haizhou AI,Chang Huang,Shihong Lao.Fast Rotation Invariant Multi-View Face Detection Based on Real Adaboost[C].fgr,p.79,Sixth IEEE International Conference on Automatic Face and Gesture Recognition,2004.
  • 6S Z Li and Z Zhang.Floatboost learning and statistical face detection[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,vol.26,pp.1112-1123,September 2004.
  • 7P Viola and M Jones.Fast and robust classification using asymmetric AdaBoost and a detector cascade[C].In NIPS 14,2002.
  • 8P Viola and M Jones.Robust real-time object detection[C].In Proc.of IEEE Workshop on Statistical and Theories of Computer Vision.2001.

同被引文献13

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部