期刊文献+

BC-domain的性质及core紧空间的刻画 被引量:1

The Properties of BC-domain and the Characterization Theorems of Core Compact Space
下载PDF
导出
摘要 该文研究了bc-domain与其他domain之间的联系,给出了bc-domain的一些性质,得到了范畴BC不是笛卡尔闭范畴,最后给出了bc-domain与core紧空间的一个等价刻画. In this paper, we study the relationship between be-domain and other domains, and get the conclusion that the category of BC is not a cartesian closed category. At last, we give the characterization theorems of be-domain and core compact space.
作者 管雪冲
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2007年第6期616-618,627,共4页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 国家自然科学基金(10371079) 徐州师范大学自然科学基金(04XLB04)资助项目
关键词 bc-domain com紧 Iawson紧 紧空间 笛卡尔闭范畴 be-domain core compact Lawson compact compact space the cartesian closed category
  • 相关文献

参考文献7

  • 1Stolenberg-Hansen V, Lindstorm I, Griffor E R. Mathematical theory of domains[ M]. Gambridge: Cambridge University Press, 1994.
  • 2Abramsky S, Jung A. Domain theory[ M]. Claredon: Handbook of logic in Computer Science, 1995.
  • 3Hoffmann Gierz G, Hofmann K H,Keimel K,et al. Continuous lattices and domains[ M]. Cambridge:Cambridge University Press,2003.
  • 4Liu Ying-ming, Liang Ji-hua. Solution to two problems of J.D. Lawson and M. Misolve[ J ]. Topology and its Application, 1996, 69: 153- 164.
  • 5Lawson Jimmie D,Xu Luoshan.When does the class [A → B] consist of continuous domains? [J] .Topology and its Application,2003, 130:91-97.
  • 6寇辉.关于紧连续L-domain的一个刻画定理[J].数学进展,2003,32(6):683-688. 被引量:6
  • 7Lawson J D. The versatile continuous orders[ M]. New York: Lecture Notes in Computer Science 298, Springer-Vedag, 1998:134-160.

二级参考文献13

  • 1[1]Amadio R M. Domains and Lambda-Calculi [M]. Cambridge University Press, 1998.
  • 2[2]Abramsky S and Jung A. Domain Theory [M]. Handbook of Logic in Computer Science, S. Abramsky et al (editors), Volume 3, Clarendon Press, 1994, 1-168.
  • 3[3]Liu Y M and Liang J H. Solutions to two problems of J. D. Lawson and M. Mislove [J]. Topology and its Applications, 1996, 69, 153-164.
  • 4[4]Chen Y X. Stone duality and representation of stable domain [J]. Computers Math. Appl., 1997, 1(34),27-41.
  • 5[5]Kou Hui and Luo M K. Fixed points of Scott continuous self-maps [J]. Science in China (Series A), 2001(to appeare).
  • 6[6]Jung A. Cartesian Closed Categories of Domains [M]. Volume 66 of CWI Tracts, 1989.
  • 7[7]Jung A. The classification of continuous domains [C]. In Logic in Computer Science, IEEE Computer Society,1990, 35-40.
  • 8[8]Liang J H and Keimel K. Compact continuous L-domains [J]. Computers and Mathematics With Applications, 1999, 38: 81-89.
  • 9[9]Gierz G et al. A Compendium of Continuous Lattices [M]. Springer-Verlag, New York, 1980.
  • 10[10]Isbell J R. Function spaces and adjoints [J]. Symposia Math., 1975, 36, 317-339.

共引文献5

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部