期刊文献+

一种新的基于方向导数的二维自适应网格生成算法 被引量:3

A New Algorithm of Mesh Generation for 2-D Adaptive Mesh Based on Directional Derivatives
下载PDF
导出
摘要 结合形变原理及网格迭代思想,利用方向导数计算控制函数,提出一种新的二维空间自适应网格生成算法。数值实验表明,该算法能较好地适应解函数的空间剧烈变化。与其他自适应算法比较,其主要优点是该算法逻辑简单,避免了解网格偏微分方程,节约了网格计算时间。 A new algorithm of mesh generation for 2-D adaptive mesh method is proposed while combining the deformation principle and the idea of mesh iteration by means of direetional derivatives to compute the monitor function. The numerical experiments show that this algorithm can well adapt to high spatial activities of the solutions. The main advantage of this algorithm is its simple logicality and it can avoid solving moving mesh partial differential equations and save time for computing mesh to compare the other adaptive algorithms.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2007年第6期126-130,共5页 Journal of National University of Defense Technology
基金 国家自然科学基金项目(60773022) 国家863计划资助项目(2007AA01Z313) 湖南省教育厅资助科研项目(06C712)
关键词 自适应网格 移动网格 有限元方法 形变方法 adaptive mesh moving mesh finite elements method deformation method
  • 相关文献

参考文献10

  • 1Winslow A. Numerical Solution of the Quasi-linear Poisson Equation in a Nonuniform Triangle Mesh[J]. J. Comput, Phys. ,1967,1:149- 172.
  • 2Zegling P A. Moving Grid Teehniques[M]. CRC Press LLC,1999,
  • 3Huang W Z,Ren Y H, Russell R D. Moving Mesh Partial Differential Equations(MMPDES) Based on the Equidistribution Prlnciple[J]. SIAM J. Numer. Anal.,1994, 31(3):709-730.
  • 4Dvinsky A S. Adaptive Grid Generation from Harmonic Maps on Riemannian Manifolds[J]. J. Comput. Phys., 1991, 95: 450-476.
  • 5Li R, Tang T, Zhang P W. Moving Mesh Methods in Multiple Dimensions Based on Harmonic Maps[J]. J. Comput. Phys,, 2001,170: 562- 588.
  • 6Li R, Tang T, Zhang P W. A Moving Mesh Finite Element Algorithm for Singular Problems in Two and Three Space Dimensions[J]. J. Comput. Phys. ,2002, 177:365 - 393.
  • 7Cao W M, C.arretezo-gmgzales R, Huang W Z, et al. Variational Mesh Adsptation Methods for Axisymmetical Problems[J]. SIAM J. Numer. Anal. ,2003, 41(1):235-2.57.
  • 8Cao W M, Huang W Z, Russell R O. A Moving Mesh Method Based on Thegeometric Conservation Law[J]. SIAM J. Sci, Comput. ,2002, 24(1 ) : 118- 142.
  • 9Liao G J,Su J Z, A Moving Grid Method for (1 + 1) Dimension[J]. Appl. Math. Lett. ,1995,8(4):47-49.
  • 10Liao G, I.,iu F, Pena O Let al. Level-set-based Deformation Methods for Adaptive Grids[J]. J. Comput. Phys., 2000, 159:103 - 122.

同被引文献12

  • 1Rank E,Werner H.An adaptive finite element approach for the free surface seepage problem[J].Int.J.Num.Meth.Eng.,1986,23(7):1217-1228.
  • 2Chung K Y,Kikuchi N.Adaptive methods to solve free Boundary problems of flow through porous media[J].Int.J.for Num.And Ana1.Meth.,1987,11 (1):17-31.
  • 3Burklcy V J,Bruch Jr J C.Adaptive error analysis in Seepage problems[J].Int.J.Num.Meth.Eng.,1991,31(7):1333-1356.
  • 4Dvinsky A S.Adaptive Grid Generation from Harmonic Maps on Riemannian Manifolds[J].J.Comput.Phys.,1991,95:450-476.
  • 5Li R,Tang T,Zhang P W.Moving mesh methods in multiple dimensions based on harmonic maps[J].J.Comput.Phys.,2001,170:562-588.
  • 6Hamilton Richard S.Harmonic Maps of Manifolds with Boundary[M].New York:Springer-Verlag,1975.
  • 7Schoen R,Yau S T.On univalent harmonic maps between surfaces[J].Invent.Math.,1978,44:265-278.
  • 8Cao W M,Huang W Z,Russell R D.An error indicator monitor function for an r-adaptive finite-element method[J].J.Comput.Phys.,2001,170:871-892.
  • 9Josu A.Anew APFstrategyfor path planningin envi-ronments with obstacles. Mechanism and Machine Theory . 2005
  • 10SUGIBARA K,SMITH J.Genetic algorithms for adaptive motionplanning of an autonomous mobiles robotics[C]//. Proc of IEEE TransSMS . 1997

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部