期刊文献+

马尔可夫跳变系统的蒙特卡罗仿真 被引量:4

Monte Carlo simulation of markovian jump system
下载PDF
导出
摘要 针对跳变系统理论研究中缺少有效的仿真方法,提出了一种适用于跳变系统的蒙特卡罗法。跳变系统蒙特卡罗仿真的关键是马尔可夫链的仿真实现,研究了两种生成马尔可夫链的方法,即利用MATLAB函数randsrc和基于unifrnd函数产生均匀分布的随机数,提出了根据转移概率矩阵P对随机数设置不同的阈值来形成马尔可夫链的算法。根据仿真的结果对转移概率进行了验证,该方法概念清晰,简单易行,可用于切换系统等一般随机系统的研究。 Because there are no effective simulation methods in the theoretical study of jump systems, a Monte carlo method for jump systems is proposed. The key problem of Monte Carlo simulation of the jump system is the realization of the Markov chain. Two methods of generating the Markov chain are presented. One method was to use the MATLAB function randsrc, another was based on the function unfired to generate random numbers with uniform distribution. And various threshouds for the random numbers were set accoding to the transition probability matrix P to produce the Markov chain. The algorithms of the two methods were also provided. An application example was given and the transition probability was verified based on the simulation results. The proposed method is simple and clear in concepts, and can be also used for the study of stochastic systems such as switching systems.
出处 《电机与控制学报》 EI CSCD 北大核心 2008年第1期80-83,共4页 Electric Machines and Control
基金 国家自然科学基金(60674102) 哈尔滨工业大学优秀青年教师培养计算资助(HIT20060103)
关键词 马尔可夫链 蒙特卡罗仿真 跳变系统 转移概率矩阵 Markov chain Monte Carlo simulation jump system transition probability matrix
  • 相关文献

参考文献5

  • 1COSTA O L V,FILHO E O A,BOUKAS E K,et al.Constrained quadratic state feedback control of discrete-time Markovian jump linear system[J].Automatica,1999,35:617-626.
  • 2XIONG J,LAM J.Stabilization of discrete-time Markovian jump linear systems via time-delayed controllers[J].Automatica,2005,42:747-753.
  • 3SATHANANTHAN S,KEEL L H.Optimal practical stabilization and controllability of systems with Markovian jumps[J].Nonlinear Analysis,2003,54:1011-1027.
  • 4BOUKAS E K,SHI P,NGUANG S K.Robust H∞ control for linear Markovian jump systems with unknown nonlinearities[J].Journal of Mathematical Analysis and Applications,2003,282:241-255.
  • 5MAHMOUD M S,SHI P,ISMAIL A.Robust Kalman filtering for discrete-time Markovian jump systems with parameter uncertainty[J].Journal of Computational and Applied Mathematics,2004,169:53-69.

同被引文献40

  • 1李艳,胡杨,刘庆国.放电倍率对锂离子蓄电池循环性能的影响[J].电源技术,2006,30(6):488-491. 被引量:19
  • 2WALSH G C, YE H, BUSHNELL L S. Analysis of net-worked control systems [C]//Proceedings of the American Control Conference. San Diego, 1999.
  • 3NILSSON J, BERNHARDSSON B. Stochastic analysis and control of real-time systems with random time delay [J]. Automatica, 1998, 34(1) : 57-64.
  • 4YUE D, HAN Q L, LAM J. Network-based robust control of systems with uncertainty [J]. Automatica , 2005, 41 ( 1 ) : 99-107.
  • 5ZHANG W, BRANICKY M S, PHILLIPS S M. Stability of networked control systems [ J ]. IEEE Control Syst Mag, 2001, 21 ( 1 ) : 84-99.
  • 6RIVERA M G, BARREIRO A. Analysis of networked control systems with drops and variable delays [ J ]. Automatica,2007, 43: 2054-2059.
  • 7YU M, WANG L. Stabilization of networked control systems with data packet dropout and network delays via switching system approach[C]// Proceedings of the 43rd IEEE Conference on Decision and Control. [ s. l. ] , 2004.
  • 8SMITH S C, SEILER P. Estimation with Lossy measurements : jump estimators for jump systems [ J ]. IEEE Transactions on Automatic Control,2003, 48(12) : 2163-2171.
  • 9XIONG J, LAM J. Stabilization of linear systems over networks with bounded packet loss [ J ]. Automatica, 2007,43 ( 1 ) : 80-87.
  • 10JI Y, CHIZECK H J. Stability and control of discrete-time jump linear systems [ J ]. Control Theory and Advanced Technology, 1991, 7(2): 247-270.

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部