期刊文献+

不完全金融市场中基于最优对冲的衍生资产定价 被引量:1

Derivative Pricing Based on Optimal Hedge in Incomplete Markets
下载PDF
导出
摘要 研究了一个不完全的二期金融市场中的衍生资产定价问题,给出衍生资产在二阶矩最小意义下的最优对冲资产组合,证明了该组合的期望收益等于衍生资产的期望收益,并利用其确定了衍生资产的理论价格。当问题退化为普通二叉树模型时,用一般两期模型得到的最优对冲资产组合就是完全复制资产组合,结论与二叉树模型的结论一致。最后给出了计算期权价格的例子。 In this paper we study the derivative pricing in incomplete financial market with two periods. The optimal hedge portfolio is given under the two moment sense. We show that the expected revenue of this portfolio is equal to the expected revenue of the derivatives and determines the theoretical price. An example on option pricing is given to demenstrate our discussions.
作者 曹晓华 潘杰
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2008年第1期154-156,160,共4页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金资助(70073017)
关键词 二叉树模型 衍生资产定价 预期收益 不完全市场 CRR model derivative pricing expected revenue incomplete market
  • 相关文献

参考文献10

  • 1BLACK, SCHOLES M. The pricing of options and corporate liabilities[J]. J Political Economy, 1973, 81: 637-659.
  • 2COLWELL D B, ELLIOTT R J, KOPP P R. Martingale representation and hedging policies[J]. Stochastic Process, 1991, 38: 335-345.
  • 3ELLIOTT R J, KOPP P R. Mathematics of financial markets[M]. [S.l.]: Springer Press, 1999.
  • 4WILMOTT P, DEWYNME J, HOWISON S. Option pricing: mathematical models and computation[M]. Oxford: Oxford University Press, 1994.
  • 5CVITANIC J. Nonlinear fmancial markets: hedging and portfolio optimization[C]//Mathematics of Derivatives Securities. [S.l.]: Publications of the Newton Institute, 1997.
  • 6DAVIS M H A. Option pricing in incomplete markets[C]// Mathematics of Derivatives Securities. [S.l.]: Publications of the Newton Institute, 1997.
  • 7SCHWEIZER M. Option hedging for semimartingales[J]. Stochastic Process Appl, 1991, 37: 339-363.
  • 8SCHWEIZER M. A projecting result for semimartingales[J]. Stochastics Rep, 1994, 50: 175-183.
  • 9FRITTELLI M. Semimartingales and asset pricing under constraints[C]//Mathematics of Derivatives Securities. [S.l.]: Publications of the Newton Institute, 1997.
  • 10HARRISON J M, KREPS D M. Martingales and arbitrage in multi-period securities market[J]. J Econ Theory, 1979, 20: 381-408.

同被引文献14

  • 1孙万贵.不完全市场中动态资产分配[J].应用数学学报,2006,29(1):166-174. 被引量:5
  • 2Karatzas I, Lehoczky J P, Shreve S E, et al. Martingale and duality for utility maximization in an incomplete market[J]. SIAM J Contr Optim, 1991, 29(3): 702- 730.
  • 3Zhang A H. A secret to create a complete market from an incomplete market[J]. Applied Mathematics and Computation, 2007, 191(1): 253 -262.
  • 4Musiela M, Rutkowski M. Martingale Methods in Financial Modelling[M]. Berlin: Springer, 1998.
  • 5Harrison J, Kreps D. Martingales and arbitrage in multi-period securities markets[J]. Journal of Economic Theory, 1979, 20(3): 381-408.
  • 6Harrison J, Kreps D. Martingales and arbitrage in multi-period securities markets[J]. Journal of Economic Theory, ]979, 20(3): 381-408.
  • 7Harrison J, Pliska S. Martingales and stochastic integrals in the theory of continuous trading[J]. Stochastic Processes and Their Applications, 1981, 11(3): 215-260.
  • 8Jouini E, Kallal H. Martingales and arbitrage in securities markets with transaction costs[J]. Journal of Economic Theory, 1995, 66(1): 178-197.
  • 9Tepla L. Optimal portfolio polices with borrowing and short sale constraints[J]. Journal of Economic Dynamics and Control, 2000, 24(11/12): 1623 -1639.
  • 10Wang Z G, Xia J M, Zhang L H. Optimal investment for an insurer: The martingale approach[J]. Insurance: Mathematics and Economics, 2007, 40(2): 322-334.

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部