期刊文献+

解约束凸规划问题的改进势函数下降算法

A Improvement of Potential-reduction Algorithm to Solve Linearly Con-strained Convex Programming
下载PDF
导出
摘要 介绍了一种利用改进的势函数下降内点算法来求解带线性约束的凸规划问题,在不能保证Hessian矩阵半正定的迭代中,用势函数的投影下降方向代替原势下降内点算法的搜索方向,最后给出一组算例。 This paper introduces a improvement of potential-reduction interior-point algorithm to solve linearly con-strained convex programming. At the step of the algorithm that can't guarantee semi-definite Hessian Matrix, using the projection descent directions of potential functions substitute original algorithm. At last a group of examples are given.
作者 王朝平
出处 《浙江海洋学院学报(自然科学版)》 CAS 2007年第4期470-473,共4页 Journal of Zhejiang Ocean University(Natural Science Edition)
基金 浙江海洋学院科研启动项目
关键词 凸规划问题 线性不等式约束 势函数 内点算法 最速下降法 convex program linear inequality constraint potential function interior point method steepest descent algorithm
  • 相关文献

参考文献1

二级参考文献12

  • 1[1]Lucia, A. and Xu, J.. Chemical process optimization using Newton-like methods. Computers chem. Engng. , 1990, 14(2):119-138
  • 2[2]Fletcher, R.. Practical methods of optimization. 2nd end.. New York, Wiley Pub. , 1987
  • 3[3]Lucia, A. , Xu, J. and Couto, G. C. D'. . Sparse quadratic programming in chemical process optimization. Ann. Oper. Res. , 1993, 42(1):55-83
  • 4[4]Vasantharajan, S. , Viswanathan, J. and Biegler, L.T.. Reduced successive quadratic programming implementation for large-scale optimization problems with smaller degrees of freedom. Computers chem. Engng. , 1990,14 (8): 907- 915
  • 5[5]Kozlov, M.K. , Tarasov, S.P. and Khachiyan, L.G. , Polynomial solvability of convex quadratic programming. Soviet Mathematics Doklady, 1979,20(8):1108-1111
  • 6[6]Kappor, S. and Vaidya, P.M.. Fast algorithms for convex quadratic programming and multicommodity flows. Proceedings of the 18th Annual ACM Symposium on Theory of Computing, California, May, 1986,147- 159
  • 7[7]Ye, Y. and Tse, E.. A polynomial algorithm for convex programmin. Working Paper, Department of Enginering-Economic Systems, Stanford University, Stanford, CA, 1986
  • 8[8]Monteiro, R. D.C. and Adler, I. , Interior path following primal-dual algorithms. Part I : convex quadratic programming. Math. Programming, 1989,44 (1) : 43- 66
  • 9[9]McCormick, G. P.. Nonlinear programming: theory, algorithms and applications. New York:John Wileg & Sons Inc. , 1983
  • 10[10]Monteiro, R. D. C. . A globally convergent primal-dual interior point algorithm for convex programming. Math. Programming, 1994, 64(1) : 123- 147

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部