期刊文献+

Caudrey-Dodd-Gibbon-Kaeada方程的Hirota双线性形式和多孤子解 被引量:1

Hirota Bilinear form and Multi-Soliton Solutions of CDGK Eequation
下载PDF
导出
摘要 通过变换求出Caudrey-Dodd-Gibbon-Kaeada(CDGK)方程的Hirota双线性形式,进而得CDGK出方程多孤子解的解析表达式,并用三维图形展示出CDGK方程多孤子解的主要相互作用过程的特征. We obtain the Hirota bilinear form of CDGK equation by appropricate transformation, furthery the analytical expressions of multiple-soliton solutions is achieved and the features of the interaction of CDGK equation's multiple - soliton solution is illustrated by using the 3D maps.
作者 黄华
出处 《赣南师范学院学报》 2007年第6期31-33,共3页 Journal of Gannan Teachers' College(Social Science(2))
关键词 Hirota双线性形式 CDGK方程 多孤子解 hirota bilinear form CDGK equation multiple-soliton solutions
  • 相关文献

参考文献7

  • 1G. L. lamb, Jr. Elements of Soliton Theory[J]. New York:Wiley, 1980,86(10) :389 -401.
  • 2Hirota R. Exact Soultion of the Kdv eguation for muhiple collisions of solitons[ J]. phys , Rev. Lett, 1971,27 (3) : 1192 - 1194.
  • 3D.J. Kaup, On the inverse scattering problem for cubic eigenvalue problems of the class Cx +6qc +6rc = Ac[J]. Stud. Appl. Math. , 1980, 62 (40) : 189 -216.
  • 4B.A. Kupershmidt. A super Korteweg-de Vries equation: An integrable system[J]. Phys. Lett. , 1984, 102(3) : 213 -215.
  • 5K. Sawada and J. Kotera, A method for finding N-soliton solutions of the KdV equation and KdV-like equation[ J]. Prog. Theor. Phys. , 1974,51 (81) : 1355 -1367.
  • 6P. J. Caudrey, R. K. Dodd. J. D. Gibbon, Proceedings of the Royal Society of London[J]. Mathematical and Physical Sciences, 1976, 351 (6) : 407 -422.
  • 7Satsuma J,Kaup D J. A Backlund transformation for KdV equation[J]. J. Phys. Soc. Jpn. , 1978, 43(30) : 692 -697.

同被引文献15

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部