摘要
本文研究一类二阶椭圆组强非线性广义Riemann-Hilbert边值问题,利用积分方程理论和摄动方法及对近似解序列的先验估计,讨论了边值问题在Hardy函数中的可解性.
n this paper, a class of strongly nonlinear generalized RiemannHilbert problems for second order elliptic system is studied. By means of the theory of integral equation, the authors use a known method of approximation dealing with a solvable perturbed problem and performing the corresponding limits on account of suitable prior estimates, and prove that the problems possess solutions in Hardy class, the solution w(z) belongs to W12∩W2p(G),p>2.
出处
《上海大学学报(自然科学版)》
CAS
CSCD
1997年第4期355-365,共11页
Journal of Shanghai University:Natural Science Edition
基金
上海市自然科学基金
关键词
非线性
边值问题
摄动理论
存在性
椭圆型方程
nonlinear boundary value problem, perturbed method, prior estimates, existence theorem